Defining information-based functional objectives for neurostimulation and control

Elham Ghazizadeh, Peng Yi, Shinung Ching

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Neurostimulation - the practice of applying exogenous excitation, e.g., via electrical current, to the brain - has been used for decades in clinical applications such as the treatment of motor disorders and neuropsychiatric illnesses. Over the past several years, more emphasis has been placed on understanding and designing neurostimulation from a systems-theoretic perspective, so as to better optimize its use. Particular questions of interest have included designing stimulation waveforms that best induce certain patterns of brain activity while minimizing expenditure of stimulus power. The pursuit of these designs faces a fundamental conundrum, insofar as they presume that the desired pattern (e.g., desyn-chronization of a neural population) is known a priori. In this paper, we present an alternative paradigm wherein the goal of the stimulation is not to induce a prescribed pattern, but rather to simply improve the functionality of the stimulated circuit/system. Here, the notion of functionality is defined in terms of an information-theoretic objective. Specifically, we seek closed loop control designs that maximize the ability of a controlled circuit to encode an afferent 'hidden input,' without prescription of dynamics or output. In this way, the control attempts only to make the system 'effective' without knowing beforehand the dynamics that are needed to be induced. We devote most of our effort to defining this framework mathematically, providing algorithmic procedures that demonstrate its solution and interpreting the results of this procedure for simple, prototypical dynamical systems. Simulation results are provided for more complex models, including an example involving control of a canonical neural mass model.

Original languageEnglish
Title of host publication2019 American Control Conference, ACC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages866-871
Number of pages6
ISBN (Electronic)9781538679265
DOIs
StatePublished - Jul 2019
Event2019 American Control Conference, ACC 2019 - Philadelphia, United States
Duration: Jul 10 2019Jul 12 2019

Publication series

NameProceedings of the American Control Conference
Volume2019-July
ISSN (Print)0743-1619

Conference

Conference2019 American Control Conference, ACC 2019
Country/TerritoryUnited States
CityPhiladelphia
Period07/10/1907/12/19

Fingerprint

Dive into the research topics of 'Defining information-based functional objectives for neurostimulation and control'. Together they form a unique fingerprint.

Cite this