TY - JOUR
T1 - Defibrillation effectiveness and safety of the shock waveform used in a contemporary wearable cardioverter defibrillator
T2 - Results from animal and human studies
AU - Gleva, Marye J.
AU - Sullivan, Joseph
AU - Crawford, Thomas C.
AU - Walcott, Greg
AU - Birgersdotter-Green, Ulrika
AU - Branch, Kelley R.
AU - Doshi, Rahul N.
AU - Kivilaid, Kaisa
AU - Brennan, Kelly
AU - Rowbotham, Ron K.
AU - Gustavson, Laura M.
AU - Poole, Jeanne E.
N1 - Publisher Copyright:
Copyright: © 2023 Gleva et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2023/3
Y1 - 2023/3
N2 - Introduction The wearable cardioverter defibrillator (WCD) is used to protect patients at risk for sudden cardiac arrest. We examined defibrillation efficacy and safety of a biphasic truncated exponential waveform designed for use in a contemporary WCD in three animal studies and a human study. Methods Animal (swine) studies: #1: Efficacy comparison of a 170J BTE waveform (SHOCK A) to a 150J BTE waveform (SHOCK B) that approximates another commercially available waveform. Primary endpoint first shock success rate. #2: Efficacy comparison of the two waveforms at attenuated charge voltages in swine at three prespecified impedances. Primary endpoint first shock success rate. #3: Safety comparison of SHOCK A and SHOCK B in swine. Primary endpoint cardiac biomarker level changes baseline to 6 and 24 hours post-shock. Human Study: Efficacy comparison of SHOCK A to prespecified goal and safety evaluation. Primary endpoint cumulative first and second shock success rate. Safety endpoint adverse events. Results Animal Studies #1: 120 VF episodes in six swine. First shock success rates for SHOCK A and SHOCK B were 100%; SHOCK A non-inferior to SHOCK B (entire 95% CI of rate difference above -10% margin, p < .001). #2: 2,160 VF episodes in thirty-six swine. Attenuated SHOCK A was non-inferior to attenuated SHOCK B at each impedance (entire 95% CI of rate difference above -10% margin, p < .001). #3: Ten swine, five shocked five times each with SHOCK A, five shocked five times each with SHOCK B. No significant difference in troponin I (p = 0.658) or creatine phosphokinase (p = 0.855) changes from baseline between SHOCK A and SHOCK B. Human Study: Thirteen patients, 100% VF conversion rate. Mild skin irritation from adhesive defibrillation pads in three patients. Conclusions The BTE waveform effectively and safely terminated induced VF in swine and a small sample in humans.
AB - Introduction The wearable cardioverter defibrillator (WCD) is used to protect patients at risk for sudden cardiac arrest. We examined defibrillation efficacy and safety of a biphasic truncated exponential waveform designed for use in a contemporary WCD in three animal studies and a human study. Methods Animal (swine) studies: #1: Efficacy comparison of a 170J BTE waveform (SHOCK A) to a 150J BTE waveform (SHOCK B) that approximates another commercially available waveform. Primary endpoint first shock success rate. #2: Efficacy comparison of the two waveforms at attenuated charge voltages in swine at three prespecified impedances. Primary endpoint first shock success rate. #3: Safety comparison of SHOCK A and SHOCK B in swine. Primary endpoint cardiac biomarker level changes baseline to 6 and 24 hours post-shock. Human Study: Efficacy comparison of SHOCK A to prespecified goal and safety evaluation. Primary endpoint cumulative first and second shock success rate. Safety endpoint adverse events. Results Animal Studies #1: 120 VF episodes in six swine. First shock success rates for SHOCK A and SHOCK B were 100%; SHOCK A non-inferior to SHOCK B (entire 95% CI of rate difference above -10% margin, p < .001). #2: 2,160 VF episodes in thirty-six swine. Attenuated SHOCK A was non-inferior to attenuated SHOCK B at each impedance (entire 95% CI of rate difference above -10% margin, p < .001). #3: Ten swine, five shocked five times each with SHOCK A, five shocked five times each with SHOCK B. No significant difference in troponin I (p = 0.658) or creatine phosphokinase (p = 0.855) changes from baseline between SHOCK A and SHOCK B. Human Study: Thirteen patients, 100% VF conversion rate. Mild skin irritation from adhesive defibrillation pads in three patients. Conclusions The BTE waveform effectively and safely terminated induced VF in swine and a small sample in humans.
UR - http://www.scopus.com/inward/record.url?scp=85150311159&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0281340
DO - 10.1371/journal.pone.0281340
M3 - Article
C2 - 36917566
AN - SCOPUS:85150311159
SN - 1932-6203
VL - 18
JO - PloS one
JF - PloS one
IS - 3 March
M1 - e0281340
ER -