Deep learning from atrioventricular plane displacement in patients with Takotsubo syndrome: lighting up the black-box

Fahim Zaman, Nicholas Isom, Amanda Chang, Yi Grace Wang, Ahmed Abdelhamid, Arooj Khan, Majesh Makan, Mahmoud Abdelghany, Xiaodong Wu, Kan Liu

Research output: Contribution to journalArticlepeer-review

Abstract

Aims: The spatiotemporal deep convolutional neural network (DCNN) helps reduce echocardiographic readers' erroneous 'judgement calls' on Takotsubo syndrome (TTS). The aim of this study was to improve the interpretability of the spatiotemporal DCNN to discover latent imaging features associated with causative TTS pathophysiology. Methods and results: We applied gradient-weighted class activation mapping analysis to visualize an established spatiotemporal DCNN based on the echocardiographic videos to differentiate TTS (150 patients) from anterior wall ST-segment elevation myocardial infarction (STEMI, 150 patients). Forty-eight human expert readers interpreted the same echocardiographic videos and prioritized the regions of interest on myocardium for the differentiation. Based on visualization results, we completed optical flow measurement, myocardial strain, and Doppler/tissue Doppler echocardiography studies to investigate regional myocardial temporal dynamics and diastology. While human readers' visualization predominantly focused on the apex of the heart in TTS patients, the DCNN temporal arm's saliency visualization was attentive on the base of the heart, particularly at the atrioventricular (AV) plane. Compared with STEMI patients, TTS patients consistently showed weaker peak longitudinal displacement (in pixels) in the basal inferoseptal (systolic: 2.15 ± 1.41 vs. 3.10 ± 1.66, P < 0.001; diastolic: 2.36 ± 1.71 vs. 2.97 ± 1.69, P = 0.004) and basal anterolateral (systolic: 2.70 ± 1.96 vs. 3.44 ± 2.13, P = 0.003; diastolic: 2.73 ± 1.70 vs. 3.45 ± 2.20, P = 0.002) segments, and worse longitudinal myocardial strain in the basal inferoseptal (-8.5 ± 3.8% vs. -9.9 ± 4.1%, P = 0.013) and basal anterolateral (-8.6 ± 4.2% vs. -10.4 ± 4.1%, P = 0.006) segments. Meanwhile, TTS patients showed worse diastolic mechanics than STEMI patients (E'/septal: 5.1 ± 1.2 cm/s vs. 6.3 ± 1.5 cm/s, P < 0.001; S'/septal: 5.8 ± 1.3 cm/s vs. 6.8 ± 1.4 cm/s, P < 0.001; E'/lateral: 6.0 ± 1.4 cm/s vs. 7.9 ± 1.6 cm/s, P < 0.001; S'/lateral: 6.3 ± 1.4 cm/s vs. 7.3 ± 1.5 cm/s, P < 0.001; E/E': 15.5 ± 5.6 vs. 12.5 ± 3.5, P < 0.001). Conclusion: The spatiotemporal DCNN saliency visualization helps identify the pattern of myocardial temporal dynamics and navigates the quantification of regional myocardial mechanics. Reduced AV plane displacement in TTS patients likely correlates with impaired diastolic mechanics.

Original languageEnglish
Pages (from-to)134-143
Number of pages10
JournalEuropean Heart Journal - Digital Health
Volume5
Issue number2
DOIs
StatePublished - Mar 1 2024

Keywords

  • Atrioventricular plane
  • Diastolic dysfunction
  • ST-segment elevation myocardial infarction
  • Saliency visualization
  • Spatiotemporal deep convolutional neural networks
  • Takotsubo syndrome

Fingerprint

Dive into the research topics of 'Deep learning from atrioventricular plane displacement in patients with Takotsubo syndrome: lighting up the black-box'. Together they form a unique fingerprint.

Cite this