Deep Learning Coordinate-Free Quantum Chemistry

Matthew K. Matlock, Max Hoffman, Na Le Dang, Dakota L. Folmsbee, Luke A. Langkamp, Geoffrey R. Hutchison, Neeraj Kumar, Kathryn Sarullo, S. Joshua Swamidass

Research output: Contribution to journalArticlepeer-review

Abstract

Computing quantum chemical properties of small molecules and polymers can provide insights valuable into physicists, chemists, and biologists when designing new materials, catalysts, biological probes, and drugs. Deep learning can compute quantum chemical properties accurately in a fraction of time required by commonly used methods such as density functional theory. Most current approaches to deep learning in quantum chemistry begin with geometric information from experimentally derived molecular structures or pre-calculated atom coordinates. These approaches have many useful applications, but they can be costly in time and computational resources. In this study, we demonstrate that accurate quantum chemical computations can be performed without geometric information by operating in the coordinate-free domain using deep learning on graph encodings. Coordinate-free methods rely only on molecular graphs, the connectivity of atoms and bonds, without atom coordinates or bond distances. We also find that the choice of graph-encoding architecture substantially affects the performance of these methods. The structures of these graph-encoding architectures provide an opportunity to probe an important, outstanding question in quantum mechanics: what types of quantum chemical properties can be represented by local variable models? We find that Wave, a local variable model, accurately calculates the quantum chemical properties, while graph convolutional architectures require global variables. Furthermore, local variable Wave models outperform global variable graph convolution models on complex molecules with large, correlated systems.

Original languageEnglish
Pages (from-to)8978-8986
Number of pages9
JournalJournal of Physical Chemistry A
Volume125
Issue number40
DOIs
StatePublished - Oct 14 2021

Fingerprint

Dive into the research topics of 'Deep Learning Coordinate-Free Quantum Chemistry'. Together they form a unique fingerprint.

Cite this