Deep learning-based ROI detection of AEH and EC on histopathology WSIs for predicting hormonal treatment response

Seyed Kahaki, Ian S. Hagemann, Kenny H. Cha, Christopher Trindade, Nicholas Petrick, Nicolas Kostelecky, Lindsay E. Borden, Doaa Atwi, Kar Ming Fung, Weijie Chen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Endometrial cancer (EC) is the most common gynecologic malignancy in the United States. Hormone therapies and hysterectomy are viable treatments for early-stage EC and atypical endometrial hyperplasia (AEH), a high-risk precursor to EC. Prediction of patient response to hormonal treatment is useful for patients to make treatment decisions. We have previously developed a mix-supervised model: a weakly supervised deep learning model for hormonal treatment response prediction based on pathologist-annotated AEH and EC regions on whole slide images of H&E stained slides. The reliance on pathologist annotation in applying the model to new cases is cumbersome and subject to inter-observer variability. In this study, we automate the task of ROI detection by developing a supervised deep learning model to detect AEH and EC regions. This model achieved a patch-wise AUROC performance of 0.974 (approximate 95% CI [0.972, 0.976]). The mix-supervised model yielded a patient-level AUROC of 0.76 (95% CI [0.59, 0.92]) with ROIs detected by our new model on a hold-out test set in the task of classifying patients into responders and non-responders. As a comparison, the original model as tested on pathologist-annotated ROIs achieved an AUROC of 0.80 with 95% CI [0.63, 0.95]. Our results demonstrate the potential of using weakly supervised deep learning and supervised ROI detection model for predicting hormonal treatment response in endometrial cancer patients.

Original languageEnglish
Title of host publicationMedical Imaging 2024
Subtitle of host publicationDigital and Computational Pathology
EditorsJohn E. Tomaszewski, Aaron D. Ward
PublisherSPIE
ISBN (Electronic)9781510671706
DOIs
StatePublished - 2024
EventMedical Imaging 2024: Digital and Computational Pathology - San Diego, United States
Duration: Feb 19 2024Feb 21 2024

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume12933
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2024: Digital and Computational Pathology
Country/TerritoryUnited States
CitySan Diego
Period02/19/2402/21/24

Keywords

  • Weakly supervised learning
  • atypical endometrial hyperplasia
  • deep learning
  • hormonal treatment

Fingerprint

Dive into the research topics of 'Deep learning-based ROI detection of AEH and EC on histopathology WSIs for predicting hormonal treatment response'. Together they form a unique fingerprint.

Cite this