TY - JOUR
T1 - Deep learning-based polygenic risk analysis for Alzheimer’s disease prediction
AU - Alzheimer’s Disease Neuroimaging Initiative
AU - Zhou, Xiaopu
AU - Chen, Yu
AU - Ip, Fanny C.F.
AU - Jiang, Yuanbing
AU - Cao, Han
AU - Lv, Ge
AU - Zhong, Huan
AU - Chen, Jiahang
AU - Ye, Tao
AU - Chen, Yuewen
AU - Zhang, Yulin
AU - Ma, Shuangshuang
AU - Lo, Ronnie M.N.
AU - Tong, Estella P.S.
AU - Furst, Ansgar J.
AU - Taylor, Joy L.
AU - Yesavage, Jerome A.
AU - Li, Gail
AU - Petrie, Eric C.
AU - Peskind, Elaine R.
AU - Harding, Sandra
AU - Fruehling, J. Jay
AU - Massoglia, Dino
AU - James, Olga
AU - Arfanakis, Konstantinos
AU - Fleischman, Debra
AU - Friedl, Karl
AU - Finley, Shannon
AU - Hayes, Jacqueline
AU - Morrison, Rosemary
AU - Davis, Melissa
AU - Grafman, Jordan
AU - Neylan, Thomas
AU - Raj, Balebail Ashok
AU - Fargher, Kristin
AU - Smith, Amanda
AU - Raudin, Lisa
AU - Chaing, Gloria
AU - Relkin, Norman
AU - Smith, Karen Elizabeth
AU - Shim, Hyungsub
AU - Boles Ponto, Laura L.
AU - Schultz, Susan K.
AU - Sarrael, Antero
AU - Hernando, Raymundo
AU - Pomara, Nunzio
AU - Drost, Dick
AU - Rachinsky, Irina
AU - Pasternak, Stephen
AU - Bachman, David
AU - Spicer, Kenneth
AU - Mintzer, Jacobo
AU - Miller, Bruce L.
AU - Rosen, Howard J.
AU - Correia, Stephen
AU - Malloy, Paul
AU - Salloway, Stephen
AU - Tremont, Geoffrey
AU - Querfurth, Henry
AU - Ott, Brian R.
AU - Watkins, Franklin
AU - Garg, Pradeep
AU - Williamson, Jeff D.
AU - Sink, Kaycee M.
AU - Schwartz, Eben S.
AU - Kitzmiller, Tamar J.
AU - Santulli, Robert B.
AU - Anderson, Karen
AU - Blank, Karen
AU - Pearlson, Godfrey D.
AU - Brown, Alice D.
AU - Celmins, Dzintra
AU - Zimmerman, Earl A.
AU - Adeli, Anahita
AU - Kataki, Maria
AU - Scharre, Douglas W.
AU - Rainka, Michelle
AU - Capote, Horacio
AU - Bates, Vernice
AU - Reeder, Stephanie
AU - Tariot, Pierre
AU - Nguyen, Dana
AU - Preda, Adrian
AU - Carlsson, Cynthia M.
AU - Asthana, Sanjay
AU - Johnson, Sterling
AU - Bartha, Rob
AU - Lee, T. Y.
AU - Borrie, Michael
AU - Kittur, Smita
AU - DeCarli, Charles
AU - Olichney, John
AU - Carmichael, Owen
AU - Fletcher, Evan
AU - Hudson, Leon
AU - Ogrocki, Paula
AU - Lerner, Alan
AU - Allard, Joanne
AU - Johnson, Patricia Lynn
AU - Norbash, Alexander
AU - Budson, Andrew E.
AU - Killiany, Ronald
AU - Kowall, Neil
AU - Sirrel, Sherye A.
AU - Jacobson, Sandra A.
AU - Belden, Christine M.
AU - Sabbagh, Marwan N.
AU - Tinklenberg, Jared
AU - Rosen, Allyson
AU - Lane, Barton
AU - Frey, Meghan
AU - Marshall, Gad
AU - Johnson, Keith A.
AU - Sperling, Reisa A.
AU - Reynolds, Brigid
AU - Johnson, Kathleen
AU - Turner, Raymond Scott
AU - Villena, Teresa
AU - Martinez, Walter
AU - Sadowsky, Carl
AU - Johnson, Nancy
AU - Wu, Chuang Kuo
AU - Lipowski, Kristine
AU - Kerwin, Diana
AU - Trost, Dick
AU - Rogers, John
AU - Kertesz, Andrew
AU - Munic, Donna
AU - Bernick, Charles
AU - Assaly, Michele
AU - Mudge, Benita
AU - Feldman, Howard
AU - Hsiung, Ging Yuek Robin
AU - Hosein, Chris
AU - Bergman, Howard
AU - Chertkow, Howard
AU - MacAvoy, Martha G.
AU - Carson, Richard E.
AU - van Dyck, Christopher H.
AU - Hunt, Cynthia
AU - Herring, Scott
AU - Matthews, Brandy R.
AU - Hake, Ann Marie
AU - Farlow, Martin R.
AU - Johnson, Heather
AU - Kendall, Tracy
AU - Parfitt, Francine
AU - Graff-Radford, Neill R.
AU - Bartzokis, George
AU - Lu, Po H.
AU - Silverman, Daniel H.S.
AU - Woo, Ellen
AU - Tingus, Kathleen
AU - Apostolova, Liana
AU - Swerdlow, Russell H.
AU - Anderson, Heather S.
AU - Burns, Jeffrey M.
AU - Cellar, Janet S.
AU - Lah, James J.
AU - Levey, Allan I.
AU - DeVous, Michael
AU - Martin-Cook, Kristen
AU - Weiner, Myron
AU - King, Richard
AU - Diaz-Arrastia, Ramon
AU - Quiceno, Mary
AU - Mathews, Dana
AU - Womack, Kyle
AU - McAdams-Ortiz, Catherine
AU - Thai, Gaby
AU - Mulnard, Ruth A.
AU - Brand, Connie
AU - Ismail, M. Saleem
AU - Makino, Kelly M.
AU - Martin, Kim
AU - Goldstein, Bonnie S.
AU - Porsteinsson, Anton P.
AU - Simpson, Donna M.
AU - Oakley, Mary Ann
AU - Lopez, Oscar L.
AU - Conrad, Gary
AU - Oates, Elizabeth
AU - Sinha, Partha
AU - Hardy, Peter
AU - Jicha, Greg
AU - Smith, Charles D.
AU - Wolk, David
AU - Karlawish, Jason H.
AU - Arnold, Steven E.
AU - Wong, Terence Z.
AU - Petrella, Jeffrey R.
AU - Doraiswamy, P. Murali
AU - De Santi, Susan
AU - Glodzik, Lidia
AU - de Leon, Mony J.
AU - Rusinek, Henry
AU - Michel, Christina A.
AU - Ances, Beau
AU - Holtzman, David
AU - Raichle, Marcus
N1 - Publisher Copyright:
© The Author(s) 2023.
PY - 2023/12
Y1 - 2023/12
N2 - Background: The polygenic nature of Alzheimer’s disease (AD) suggests that multiple variants jointly contribute to disease susceptibility. As an individual’s genetic variants are constant throughout life, evaluating the combined effects of multiple disease-associated genetic risks enables reliable AD risk prediction. Because of the complexity of genomic data, current statistical analyses cannot comprehensively capture the polygenic risk of AD, resulting in unsatisfactory disease risk prediction. However, deep learning methods, which capture nonlinearity within high-dimensional genomic data, may enable more accurate disease risk prediction and improve our understanding of AD etiology. Accordingly, we developed deep learning neural network models for modeling AD polygenic risk. Methods: We constructed neural network models to model AD polygenic risk and compared them with the widely used weighted polygenic risk score and lasso models. We conducted robust linear regression analysis to investigate the relationship between the AD polygenic risk derived from deep learning methods and AD endophenotypes (i.e., plasma biomarkers and individual cognitive performance). We stratified individuals by applying unsupervised clustering to the outputs from the hidden layers of the neural network model. Results: The deep learning models outperform other statistical models for modeling AD risk. Moreover, the polygenic risk derived from the deep learning models enables the identification of disease-associated biological pathways and the stratification of individuals according to distinct pathological mechanisms. Conclusion: Our results suggest that deep learning methods are effective for modeling the genetic risks of AD and other diseases, classifying disease risks, and uncovering disease mechanisms.
AB - Background: The polygenic nature of Alzheimer’s disease (AD) suggests that multiple variants jointly contribute to disease susceptibility. As an individual’s genetic variants are constant throughout life, evaluating the combined effects of multiple disease-associated genetic risks enables reliable AD risk prediction. Because of the complexity of genomic data, current statistical analyses cannot comprehensively capture the polygenic risk of AD, resulting in unsatisfactory disease risk prediction. However, deep learning methods, which capture nonlinearity within high-dimensional genomic data, may enable more accurate disease risk prediction and improve our understanding of AD etiology. Accordingly, we developed deep learning neural network models for modeling AD polygenic risk. Methods: We constructed neural network models to model AD polygenic risk and compared them with the widely used weighted polygenic risk score and lasso models. We conducted robust linear regression analysis to investigate the relationship between the AD polygenic risk derived from deep learning methods and AD endophenotypes (i.e., plasma biomarkers and individual cognitive performance). We stratified individuals by applying unsupervised clustering to the outputs from the hidden layers of the neural network model. Results: The deep learning models outperform other statistical models for modeling AD risk. Moreover, the polygenic risk derived from the deep learning models enables the identification of disease-associated biological pathways and the stratification of individuals according to distinct pathological mechanisms. Conclusion: Our results suggest that deep learning methods are effective for modeling the genetic risks of AD and other diseases, classifying disease risks, and uncovering disease mechanisms.
UR - http://www.scopus.com/inward/record.url?scp=85203814889&partnerID=8YFLogxK
U2 - 10.1038/s43856-023-00269-x
DO - 10.1038/s43856-023-00269-x
M3 - Article
AN - SCOPUS:85203814889
SN - 2730-664X
VL - 3
JO - Communications Medicine
JF - Communications Medicine
IS - 1
M1 - 49
ER -