Dedifferentiated human articular chondrocytes redifferentiate to a cartilage-like tissue phenotype in a poly("-caprolactone)/self-assembling peptide composite scaffold

Lourdes Recha-Sancho, Franklin T. Moutos, Jordi Abellà, Farshid Guilak, Carlos E. Semino

Research output: Contribution to journalArticle

13 Scopus citations

Abstract

Adult articular cartilage has a limited capacity for growth and regeneration and, with injury, new cellular or biomaterial-based therapeutic platforms are required to promote repair. Tissue engineering aims to produce cartilage-like tissues that recreate the complex mechanical and biological properties found in vivo. In this study, a unique composite scaffold was developed by infiltrating a three-dimensional (3D) woven microfiber poly ("-caprolactone) (PCL) scaffold with the RAD16-I self-assembling nanofibers to obtain multi-scale functional and biomimetic tissue-engineered constructs. The scaffold was seeded with expanded dedifferentiated human articular chondrocytes and cultured for four weeks in control and chondrogenic growth conditions. The composite constructs were compared to control constructs obtained by culturing cells with 3D woven PCL scaffolds or RAD16-I independently. High viability and homogeneous cell distribution were observed in all three scaffolds used during the term of the culture. Moreover, gene and protein expression profiles revealed that chondrogenic markers were favored in the presence of RAD16-I peptide (PCL/RAD composite or alone) under chondrogenic induction conditions. Further, constructs displayed positive staining for toluidine blue, indicating the presence of synthesized proteoglycans. Finally, mechanical testing showed that constructs containing the PCL scaffold maintained the initial shape and viscoelastic behavior throughout the culture period, while constructs with RAD16-I scaffold alone contracted during culture time into a stiffer and compacted structure. Altogether, these results suggest that this new composite scaffold provides important mechanical requirements for a cartilage replacement, while providing a biomimetic microenvironment to re-establish the chondrogenic phenotype of human expanded articular chondrocytes.

Original languageEnglish
Article number472
JournalMaterials
Volume9
Issue number6
DOIs
StatePublished - Jun 17 2016

Keywords

  • 3D cell culture
  • Biomimetic materials
  • Cartilage tissue engineering
  • Cell differentiation
  • Human chondrocytes

Fingerprint Dive into the research topics of 'Dedifferentiated human articular chondrocytes redifferentiate to a cartilage-like tissue phenotype in a poly("-caprolactone)/self-assembling peptide composite scaffold'. Together they form a unique fingerprint.

  • Cite this