Abstract
Focal cortical dysplasia is associated with the development of seizures in children and is present in up to 40% of intractable childhood epilepsies. Transcortical freeze lesions in newborn rats reproduce many of the anatomical and physiological characteristics of human cortical dysplasia. Rats with freeze lesions have increased seizure susceptibility and a region of hyperexcitable cortex adjacent to the lesion. Since alterations in hyperpolarization-activated nonspecific cation (HCN) channels are often associated with epilepsy, we used whole cell patch-clamp recording and voltage-sensitive dye imaging to examine alterations in HCN channels and inwardly rectifying hyperpolarization-activated currents (I h) in cortical dysplasia. (L5) pyramidal neurons in lesioned animals had hyperpolarized resting membrane potentials, increased input resistances and reduced voltage "sag" associated with I h activation. These differences became nonsignificant after application of the I h blocker ZD7288. Temporal excitatory postsynaptic potential (EPSP) summation and intrinsic excitability were increased in neurons near the freeze lesion. Using voltage-sensitive dye imaging of neocortical slices, we found that inhibiting I h with ZD7288 increased the half-width of dye signals. The anticonvulsant lamotrigine produced a significant decrease in spread of activity. The ability of lamotrigine to decrease network activity was reduced in the hyperexcitable cortex near the freeze lesion. These results suggest that I h serves to constrain network activity in addition to its role in regulating cellular excitability. Reduced I h may contribute to increased network excitability in cortical dysplasia.
Original language | English |
---|---|
Pages (from-to) | 2189-2200 |
Number of pages | 12 |
Journal | Journal of neurophysiology |
Volume | 106 |
Issue number | 5 |
DOIs | |
State | Published - Nov 2011 |
Keywords
- Epilepsy
- HCN channel
- I
- Voltage-sensitive dye