Synthetic biology aspires to develop frameworks that enable the construction of complex and reliable gene networks with predictable functionalities. A key limitation is that increasing network complexity increases the demand for cellular resources, potentially causing resource-associated interference among noninteracting circuits. Although recent studies have shown the effects of resource competition on circuit behaviors, mechanisms that decouple such interference remain unclear. Here, we constructed three systems in Escherichia coli, each consisting of two independent circuit modules where the complexity of one module (Circuit 2) was systematically increased while the other (Circuit 1) remained identical. By varying the expression level of Circuit 1 and measuring its effect on the expression level of Circuit 2, we demonstrated computationally and experimentally that indirect coupling between these seemingly unconnected genetic circuits can occur in three different regulatory topologies. More importantly, we experimentally verified the computational prediction that negative feedback can significantly reduce resource-coupled interference in regulatory circuits. Our results reveal a design principle that enables cells to reliably multitask while tightly controlling cellular resources.

Original languageEnglish
Pages (from-to)1596-1604
Number of pages9
JournalACS synthetic biology
Issue number8
StatePublished - Aug 18 2017


  • biological robustness
  • negative feedback
  • protein sequestration
  • regulatory architecture
  • resource competition


Dive into the research topics of 'Decoupling Resource-Coupled Gene Expression in Living Cells'. Together they form a unique fingerprint.

Cite this