Abstract
Although hybridization plays a large role in speciation, some unknown fraction of hybrid individuals never reproduces, instead remaining as genetic dead-ends. We investigated a morphologically distinct and culturally important Chinese walnut, Juglans hopeiensis, suspected to have arisen from hybridization of Persian walnut (J. regia) with Asian butternuts (J. cathayensis, J. mandshurica, and hybrids between J. cathayensis and J. mandshurica). Based on 151 whole-genome sequences of the relevant taxa, we discovered that all J. hopeiensis individuals are first-generation hybrids, with the time for the onset of gene flow estimated as 370,000 years, implying both strong postzygotic barriers and the presence of J. regia in China by that time. Six inversion regions enriched for genes associated with pollen germination and pollen tube growth may be involved in the postzygotic barriers that prevent sexual reproduction in the hybrids. Despite its long-recurrent origination and distinct traits, J. hopeiensis does not appear on the way to speciation.
Original language | English |
---|---|
Article number | msab308 |
Journal | Molecular biology and evolution |
Volume | 39 |
Issue number | 1 |
DOIs | |
State | Published - Jan 1 2022 |
Keywords
- chromosomal rearrangements
- gene flow
- hybridization
- postzygotic reproductive barriers
- speciation
- walnuts