Abstract
Lung cancer is the leading cause of cancer-related death. Intriguingly, males with non-small cell lung cancer (NSCLC) have a higher mortality rate than females. Here, we investigated the role of serine metabolism as a predictive marker for sensitivity to the antifolate pemetrexed in male and female NSCLC cell lines. Using [13C6] glucose tracing in NSCLC cell lines, we found that a subset of male cells generated significantly more serine from glucose than female cells. Higher serine biosynthesis was further correlated with increased sensitivity to pemetrexed in male cells only. Concordant sex differences in metabolic gene expression were evident in NSCLC and pan-cancer transcriptome datasets, suggesting a potential mechanism with wide-reaching applicability. These data were further validated by integrating antifolate drug cytotoxicity and metabolic pathway transcriptome data from pan-cancer cell lines. Together, these findings highlight the importance of considering sex differences in cancer metabolism to improve treatment for all patients.
Original language | English |
---|---|
Article number | 105339 |
Journal | iScience |
Volume | 25 |
Issue number | 11 |
DOIs | |
State | Published - Nov 18 2022 |
Keywords
- Cancer
- Cell biology
- Cellular physiology