TY - JOUR
T1 - De Novo and Bi-allelic Pathogenic Variants in NARS1 Cause Neurodevelopmental Delay Due to Toxic Gain-of-Function and Partial Loss-of-Function Effects
AU - SYNAPS Study Group
AU - Manole, Andreea
AU - Efthymiou, Stephanie
AU - O'Connor, Emer
AU - Mendes, Marisa I.
AU - Jennings, Matthew
AU - Maroofian, Reza
AU - Davagnanam, Indran
AU - Mankad, Kshitij
AU - Lopez, Maria Rodriguez
AU - Salpietro, Vincenzo
AU - Harripaul, Ricardo
AU - Badalato, Lauren
AU - Walia, Jagdeep
AU - Francklyn, Christopher S.
AU - Athanasiou-Fragkouli, Alkyoni
AU - Sullivan, Roisin
AU - Desai, Sonal
AU - Baranano, Kristin
AU - Zafar, Faisal
AU - Rana, Nuzhat
AU - Ilyas, Muhammed
AU - Horga, Alejandro
AU - Kara, Majdi
AU - Mattioli, Francesca
AU - Goldenberg, Alice
AU - Griffin, Helen
AU - Piton, Amelie
AU - Henderson, Lindsay B.
AU - Kara, Benyekhlef
AU - Aslanger, Ayca Dilruba
AU - Raaphorst, Joost
AU - Pfundt, Rolph
AU - Portier, Ruben
AU - Shinawi, Marwan
AU - Kirby, Amelia
AU - Christensen, Katherine M.
AU - Wang, Lu
AU - Rosti, Rasim O.
AU - Paracha, Sohail A.
AU - Sarwar, Muhammad T.
AU - Jenkins, Dagan
AU - Ahmed, Jawad
AU - Santoni, Federico A.
AU - Ranza, Emmanuelle
AU - Iwaszkiewicz, Justyna
AU - Cytrynbaum, Cheryl
AU - Weksberg, Rosanna
AU - Wentzensen, Ingrid M.
AU - Guillen Sacoto, Maria J.
AU - Baldridge, Dustin
N1 - Publisher Copyright:
© 2020
PY - 2020/8/6
Y1 - 2020/8/6
N2 - Aminoacyl-tRNA synthetases (ARSs) are ubiquitous, ancient enzymes that charge amino acids to cognate tRNA molecules, the essential first step of protein translation. Here, we describe 32 individuals from 21 families, presenting with microcephaly, neurodevelopmental delay, seizures, peripheral neuropathy, and ataxia, with de novo heterozygous and bi-allelic mutations in asparaginyl-tRNA synthetase (NARS1). We demonstrate a reduction in NARS1 mRNA expression as well as in NARS1 enzyme levels and activity in both individual fibroblasts and induced neural progenitor cells (iNPCs). Molecular modeling of the recessive c.1633C>T (p.Arg545Cys) variant shows weaker spatial positioning and tRNA selectivity. We conclude that de novo and bi-allelic mutations in NARS1 are a significant cause of neurodevelopmental disease, where the mechanism for de novo variants could be toxic gain-of-function and for recessive variants, partial loss-of-function.
AB - Aminoacyl-tRNA synthetases (ARSs) are ubiquitous, ancient enzymes that charge amino acids to cognate tRNA molecules, the essential first step of protein translation. Here, we describe 32 individuals from 21 families, presenting with microcephaly, neurodevelopmental delay, seizures, peripheral neuropathy, and ataxia, with de novo heterozygous and bi-allelic mutations in asparaginyl-tRNA synthetase (NARS1). We demonstrate a reduction in NARS1 mRNA expression as well as in NARS1 enzyme levels and activity in both individual fibroblasts and induced neural progenitor cells (iNPCs). Molecular modeling of the recessive c.1633C>T (p.Arg545Cys) variant shows weaker spatial positioning and tRNA selectivity. We conclude that de novo and bi-allelic mutations in NARS1 are a significant cause of neurodevelopmental disease, where the mechanism for de novo variants could be toxic gain-of-function and for recessive variants, partial loss-of-function.
KW - aminoacyl-tRNA synthetase
KW - developmental delay
KW - epilepsy
KW - neurodevelopment
KW - neuropathy
KW - next generation sequencing
UR - http://www.scopus.com/inward/record.url?scp=85088934445&partnerID=8YFLogxK
U2 - 10.1016/j.ajhg.2020.06.016
DO - 10.1016/j.ajhg.2020.06.016
M3 - Article
C2 - 32738225
AN - SCOPUS:85088934445
SN - 0002-9297
VL - 107
SP - 311
EP - 324
JO - American journal of human genetics
JF - American journal of human genetics
IS - 2
ER -