DDR1 contributes to kidney inflammation and fibrosis by promoting the phosphorylation of BCR and STAT3

Corina M. Borza, Gema Bolas, Fabian Bock, Xiuqi Zhang, Favour C. Akabogu, Ming Zhi Zhang, Mark de Caestecker, Min Yang, Haichun Yang, Ethan Lee, Leslie Gewin, Agnes B. Fogo, W. Hayes McDonald, Roy Zent, Ambra Pozzi

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase activated by collagen, contributes to chronic kidney disease. However, its role in acute kidney injury and subsequent development of kidney fibrosis is not clear. Thus, we performed a model of severe ischemia/reperfusion-induced acute kidney injury that progressed to kidney fibrosis in WT and Ddr1-null mice. We showed that Ddr1-null mice had reduced acute tubular injury, inflammation, and tubulointerstitial fibrosis with overall decreased renal monocyte chemoattractant protein (MCP-1) levels and STAT3 activation. We identified breakpoint cluster region (BCR) protein as a phosphorylated target of DDR1 that controls MCP-1 production in renal proximal tubule epithelial cells. DDR1-induced BCR phosphorylation or BCR downregulation increased MCP-1 secretion, suggesting that BCR negatively regulates the levels of MCP-1. Mechanistically, phosphorylation or downregulation of BCR increased β-catenin activity and in turn MCP-1 production. Finally, we showed that DDR1-mediated STAT3 activation was required to stimulate the secretion of TGF-β. Thus, DDR1 contributes to acute and chronic kidney injury by regulating BCR and STAT3 phosphorylation and in turn the production of MCP-1 and TGF-β. These findings identify DDR1 an attractive therapeutic target for ameliorating both proinflammatory and profibrotic signaling in kidney disease.

Original languageEnglish
Article numbere150887
JournalJCI Insight
Volume7
Issue number3
DOIs
StatePublished - Feb 8 2022

Fingerprint

Dive into the research topics of 'DDR1 contributes to kidney inflammation and fibrosis by promoting the phosphorylation of BCR and STAT3'. Together they form a unique fingerprint.

Cite this