Abstract

Decoding the connectivity structure of a network of nonlinear oscillators from measurement data is a difficult yet essential task for understanding and controlling network functionality. Several data-driven network inference algorithms have been presented, but the commonly considered premise of ample measurement data is often difficult to satisfy in practice. In this paper, we propose a data-efficient network inference technique by combining correlation statistics with the model-fitting procedure. The proposed approach can identify the network structure reliably in the case of limited measurement data. We compare the proposed method with existing techniques on a network of Stuart-Landau oscillators, oscillators describing circadian gene expression, and noisy experimental data obtained from Rössler Electronic Oscillator network.

Original languageEnglish
Title of host publicationIFAC-PapersOnLine
EditorsHideaki Ishii, Yoshio Ebihara, Jun-ichi Imura, Masaki Yamakita
PublisherElsevier B.V.
Pages10089-10094
Number of pages6
Edition2
ISBN (Electronic)9781713872344
DOIs
StatePublished - Jul 1 2023
Event22nd IFAC World Congress - Yokohama, Japan
Duration: Jul 9 2023Jul 14 2023

Publication series

NameIFAC-PapersOnLine
Number2
Volume56
ISSN (Electronic)2405-8963

Conference

Conference22nd IFAC World Congress
Country/TerritoryJapan
CityYokohama
Period07/9/2307/14/23

Keywords

  • Data-driven Modeling
  • Network Inference
  • Nonlinear Oscillators
  • Time-series Analysis

Fingerprint

Dive into the research topics of 'Data-Efficient Inference of Nonlinear Oscillator Networks'. Together they form a unique fingerprint.

Cite this