102 Scopus citations

Abstract

DAL-1 (differentially expressed in adenocarcinoma of the lung)/4.1B is a tumor suppressor gene on human chromosome 18p11.3 whose expression is lost in > 50% of primary non-small-cell lung carcinomas. Based on sequence similarity, DAL-1/4.1B has been assigned to the Protein 4.1 superfamily whose members interact with plasma membrane proteins through their N-terminal FERM (4.1/Ezrin/Radixin/Moesin) domain, and cytoskeletal components via their C-terminal SAB (spectrin-actin binding) region. Using the DAL-1/4.1B FERM domain as bait for yeast two-hybrid interaction cloning, we identified protein arginine N-methyltransferase 3 (PRMT3) as a specific DAL-1/4.1B-interacting protein. PRMT3 catalyses the post-translational transfer of methyl groups from S-adenosyl-L-methionine to arginine residues of proteins. Coimmunoprecipitation experiments using lung and breast cancer cell lines confirmed this interaction in mammalian cells in vivo. In vitro binding assays demonstrated that this was an interaction occurring via the C-terminal catalytic core domain of PRMT3. DAL-1/4.1B was determined not to be a substrate for PRMT3-mediated methylation but its presence inhibits the in vitro methylation of a glycine-rich and arginine-rich methyl-accepting protein, GST (glutathione-S-transferase-GAR (glycine- and arginine-rich), which contains 14 'RGG' consensus methylation sites. In addition, induced expression of DAL-1/4.1B in MCF-7 breast cancer cells showed that the DAL-1/4.1B protein significantly inhibits PRMT3 methylation of cellular substrates. These findings suggest that modulation of post-translational methylation may be an important mechanism through which DAL-1/ 4.1B affects tumor cell growth.

Original languageEnglish
Pages (from-to)7761-7771
Number of pages11
JournalOncogene
Volume23
Issue number47
DOIs
StatePublished - Oct 14 2004

Keywords

  • DAL-1/4.1B
  • PRMT3
  • Protein methylation
  • Tumor suppressor

Fingerprint

Dive into the research topics of 'DAL-1/4.1B tumor suppressor interacts with protein arginine N-methyltransferase 3 (PRMT3) and inhibits its ability to methylate substrates in vitro and in vivo'. Together they form a unique fingerprint.

Cite this