TY - JOUR
T1 - Cytogenetic comparison of heteromorphic and homomorphic sex chromosomes in Coccinia (Cucurbitaceae) points to sex chromosome turnover
AU - Sousa, Aretuza
AU - Fuchs, Jörg
AU - Renner, Susanne S.
N1 - Publisher Copyright:
© 2017, Springer Science+Business Media Dordrecht.
PY - 2017/6/1
Y1 - 2017/6/1
N2 - Our understanding of the evolution of plant sex chromosomes is increasing rapidly due to high-throughput sequencing data and phylogenetic and molecular-cytogenetic approaches that make it possible to infer the evolutionary direction and steps leading from homomorphic to heteromorphic sex chromosomes. Here, we focus on four species of Coccinia, a genus of 25 dioecious species, including Coccinia grandis, the species with the largest known plant Y chromosome. Based on a phylogeny for the genus, we selected three species close to C. grandis to test the distribution of eight repetitive elements including two satellites, and several plastid and mitochondrial probes, that we had previously found to have distinct accumulation patterns in the C. grandis genome. Additionally, we determined C-values and performed immunostaining experiments with (peri-)centromere-specific antibodies on two species (for comparison with C. grandis). In spite of no microscopic chromosomal heteromorphism, single pairs of chromosomes in male cells of all three species accumulate some of the very same repeats that are enriched on the C. grandis Y chromosome, pointing to either old (previous) sex chromosomes or incipient (newly arising) ones, that is, to sex chromosome turnover. A 144-bp centromeric satellite repeat (CgCent) that characterizes all C. grandis chromosomes except the Y is highly abundant in all centromeric regions of the other species, indicating that the centromeric sequence of the Y chromosome diverged very recently.
AB - Our understanding of the evolution of plant sex chromosomes is increasing rapidly due to high-throughput sequencing data and phylogenetic and molecular-cytogenetic approaches that make it possible to infer the evolutionary direction and steps leading from homomorphic to heteromorphic sex chromosomes. Here, we focus on four species of Coccinia, a genus of 25 dioecious species, including Coccinia grandis, the species with the largest known plant Y chromosome. Based on a phylogeny for the genus, we selected three species close to C. grandis to test the distribution of eight repetitive elements including two satellites, and several plastid and mitochondrial probes, that we had previously found to have distinct accumulation patterns in the C. grandis genome. Additionally, we determined C-values and performed immunostaining experiments with (peri-)centromere-specific antibodies on two species (for comparison with C. grandis). In spite of no microscopic chromosomal heteromorphism, single pairs of chromosomes in male cells of all three species accumulate some of the very same repeats that are enriched on the C. grandis Y chromosome, pointing to either old (previous) sex chromosomes or incipient (newly arising) ones, that is, to sex chromosome turnover. A 144-bp centromeric satellite repeat (CgCent) that characterizes all C. grandis chromosomes except the Y is highly abundant in all centromeric regions of the other species, indicating that the centromeric sequence of the Y chromosome diverged very recently.
KW - Coccinia species
KW - FISH
KW - genome size
KW - histone modification
KW - plant sex chromosomes
KW - repetitive DNA
UR - http://www.scopus.com/inward/record.url?scp=85016034942&partnerID=8YFLogxK
U2 - 10.1007/s10577-017-9555-y
DO - 10.1007/s10577-017-9555-y
M3 - Article
C2 - 28343268
AN - SCOPUS:85016034942
SN - 0967-3849
VL - 25
SP - 191
EP - 200
JO - Chromosome Research
JF - Chromosome Research
IS - 2
ER -