Customizable, wireless and implantable neural probe design and fabrication via 3D printing

Kyle E. Parker, Juhyun Lee, Jenny R. Kim, Chinatsu Kawakami, Choong Yeon Kim, Raza Qazi, Kyung In Jang, Jae Woong Jeong, Jordan G. McCall

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


This Protocol Extension describes the low-cost production of rapidly customizable optical neural probes for in vivo optogenetics. We detail the use of a 3D printer to fabricate minimally invasive microscale inorganic light-emitting-diode-based neural probes that can control neural circuit activity in freely behaving animals, thus extending the scope of two previously published protocols describing the fabrication and implementation of optoelectronic devices for studying intact neural systems. The 3D-printing fabrication process does not require extensive training and eliminates the need for expensive materials, specialized cleanroom facilities and time-consuming microfabrication techniques typical of conventional manufacturing processes. As a result, the design of the probes can be quickly optimized, on the basis of experimental need, reducing the cost and turnaround for customization. For example, 3D-printed probes can be customized to target multiple brain regions or scaled up for use in large animal models. This protocol comprises three procedures: (1) probe fabrication, (2) wireless module preparation and (3) implantation for in vivo assays. For experienced researchers, neural probe and wireless module fabrication requires ~2 d, while implantation should take 30–60 min per animal. Time required for behavioral assays will vary depending on the experimental design and should include at least 5 d of animal handling before implantation of the probe, to familiarize each animal to their handler, thus reducing handling stress that may influence the result of the behavioral assays. The implementation of customized probes improves the flexibility in optogenetic experimental design and increases access to wireless probes for in vivo optogenetic research.

Original languageEnglish
Pages (from-to)3-21
Number of pages19
JournalNature Protocols
Issue number1
StatePublished - Jan 2023


Dive into the research topics of 'Customizable, wireless and implantable neural probe design and fabrication via 3D printing'. Together they form a unique fingerprint.

Cite this