Cullins 3a and 3b assemble with members of the broad complex/tramtrack/ bric-a-brac (BTB) protein family to form essential ubiquitin-protein ligases (E3s) in arabidopsis

Derek J. Gingerich, Jennifer M. Gagne, Donald W. Salter, Hanjo Hellmann, Mark Estelle, Ligeng Ma, Richard D. Vierstra

Research output: Contribution to journalArticlepeer-review

127 Scopus citations

Abstract

Selective modification of proteins by ubiquitination is directed by diverse families of ubiquitin-protein ligases (or E3s). A large collection of E3s use Cullins (CULs) as scaffolds to form multisubunit E3 complexes in which the CUL binds a target recognition subcomplex and the RBX1 docking protein, which delivers the activated ubiquitin moiety. Arabidopsis and rice contain a large collection of CUL isoforms, indicating that multiple CUL-based E3s exist in plants. Here we show that Arabidopsis CUL3a and CUL3b associate with RBX1 and members of the broad complex/tramtrack/bric-a-brac (BTB) protein family to form BTB E3s. Eighty genes encoding BTB domain-containing proteins were identified in the Arabidopsis genome, indicating that a diverse array of BTB E3s is possible. In addition to the BTB domain, the encoded proteins also contain various other interaction motifs that likely serve as target recognition elements. DNA microarray analyses show that BTB genes are expressed widely in the plant and that tissue-specific and isoform-specific patterns exist. Arabidopsis defective in both CUL3a and CUL3b are embryo-lethal, indicating that BTB E3s are essential for plant development.

Original languageEnglish
Pages (from-to)18810-18821
Number of pages12
JournalJournal of Biological Chemistry
Volume280
Issue number19
DOIs
StatePublished - May 13 2005

Fingerprint

Dive into the research topics of 'Cullins 3a and 3b assemble with members of the broad complex/tramtrack/ bric-a-brac (BTB) protein family to form essential ubiquitin-protein ligases (E3s) in arabidopsis'. Together they form a unique fingerprint.

Cite this