TY - JOUR
T1 - CSF VILIP-1 predicts rates of cognitive decline in early Alzheimer disease
AU - Tarawneh, R.
AU - Lee, J. M.
AU - Ladenson, J. H.
AU - Morris, J. C.
AU - Holtzman, D. M.
N1 - Funding Information:
Dr. Tarawneh reports no disclosures. Dr. Lee has served as a consultant for Johnson & Johnson and receives research support from AstraZeneca, the NIH/NINDS, the Barnes-Jewish Hospital Foundation, and the McDonnell Foundation. Dr. Ladenson has received research support from Siemens Health Care Diagnostics and is a co-inventor on pending patents filed by Washington University concerning brain biomarkers. Dr. Morris serves on scientific advisory boards for AstraZeneca, Bristol-Myers Squibb, Genentech, Inc., Merck Serono, Novartis, Pfizer Inc, Schering-Plough Corp., Eli Lilly and Company, Wyeth, and Elan Corporation; serves on the editorial advisory board of Alzheimer's Disease and Associated Disorders ; receives royalties from publishing Mild Cognitive Impairment and Early Alzheimer's Disease (John Wiley and Sons, 2008), Dementia (Clinical Publishing, 2007), Handbook of Dementing Illnesses , 2nd edition (Taylor & Francis, 2006), and for an editorial in Lancet Neurology (Elsevier, 2008); and receives research support from Elan Corporation, Wyeth, Eli Lilly and Company, Novartis, Pfizer Inc, Avid Radiopharmaceuticals, the NIH, and from the Dana Foundation. Dr. Holtzman serves on scientific advisory boards for Satori Pharmaceuticals, C2N Diagnostics, and EnVivo Pharmaceuticals; serves as an Associate Editor of Annals of Neurology , the Journal of Neuroscience, Neurobiology of Disease , and Experimental Neurology ; may accrue revenue on pending patents re: Methods for measuring the metabolism of neurally derived biomolecules in vivo; Use of anti-AB antibody to treat traumatic brain injury; Methods to treat Alzheimer's disease or other amyloid beta accumulation associated disorders; Humanized antibodies that sequester abeta peptide; Diagnostic for early stage Alzheimer's disease; and Predictive diagnostic for Alzheimer's disease; serves as a consultant to Merck Serono, Eli Lilly and Company, Takeda Pharmaceutical Company Limited, Abbott, Comentis, Inc., Eisai Inc., and AstraZeneca; is cofounder of and receives board of directors compensation from C2N Diagnostics LLC; receives research support from AstraZeneca, Pfizer Inc., Eli Lilly and Company, Elan Corporation, Forest Laboratories, Inc., the NIH, Cure Alzheimer's Fund, and Fidelity Foundation; has received compensation from Washington University from license revenue received for licensing of patent applications to C2N Diagnostics LLC; and may receive future royalty payments for Washington University licensing patents to C2N Diagnostics, LLC, and Eli Lilly and Company.
PY - 2012/3/6
Y1 - 2012/3/6
N2 - Objective: Measures of neuronal damage/dysfunction are likely good surrogates for disease progression in Alzheimer disease (AD). CSF markers of neuronal injury may offer utility in predicting disease progression and guiding prognostic and outcome assessments in therapeutic trials. Visinin-like protein-1 (VILIP-1) has demonstrated potential utility as a marker of neuronal injury. We here investigate the utility of VILIP-1 and VILIP-1/Aβ42 in predicting rates of cognitive decline in early AD. Methods: Individuals with a clinical diagnosis of very mild or mild AD (n = 60) and baseline CSF measures of VILIP-1, tau, p-tau181, and Aβ42 were followed longitudinally for an average of 2.6 years. Annual assessments included the Clinical Dementia Rating (CDR), CDR-sum of boxes (CDR-SB), and global composite scores. Mixed linear models assessed the ability of CSF biomarker measures to predict rates of cognitive decline over time. Results: Baseline CSF VILIP-1 and VILIP-1/Aβ42 levels predicted rates of future decline in CDR-SB and global composite scores over the follow-up period. Individuals with CSF VILIP-1 ≥560 pg/mL (corresponding to the upper tercile) progressed much more rapidly in CDR-SB (1.61 boxes/year; p = 0.0077) and global scores (-0.53 points/year; p = 0.0002) than individuals with lower values (0.85 boxes/year and -0.15 points/year, respectively) over the follow-up period. CSF tau, p-tau181, tau/Aβ42, and p-tau181/Aβ42 also predicted more rapid cognitive decline in CDR-SB and global scores over time. Conclusion: These findings suggest that CSF VILIP-1 and VILIP-1/Aβ42 predict rates of global cognitive decline similarly to tau and tau/Aβ42, and may be useful CSF surrogates for neurodegeneration in early AD.
AB - Objective: Measures of neuronal damage/dysfunction are likely good surrogates for disease progression in Alzheimer disease (AD). CSF markers of neuronal injury may offer utility in predicting disease progression and guiding prognostic and outcome assessments in therapeutic trials. Visinin-like protein-1 (VILIP-1) has demonstrated potential utility as a marker of neuronal injury. We here investigate the utility of VILIP-1 and VILIP-1/Aβ42 in predicting rates of cognitive decline in early AD. Methods: Individuals with a clinical diagnosis of very mild or mild AD (n = 60) and baseline CSF measures of VILIP-1, tau, p-tau181, and Aβ42 were followed longitudinally for an average of 2.6 years. Annual assessments included the Clinical Dementia Rating (CDR), CDR-sum of boxes (CDR-SB), and global composite scores. Mixed linear models assessed the ability of CSF biomarker measures to predict rates of cognitive decline over time. Results: Baseline CSF VILIP-1 and VILIP-1/Aβ42 levels predicted rates of future decline in CDR-SB and global composite scores over the follow-up period. Individuals with CSF VILIP-1 ≥560 pg/mL (corresponding to the upper tercile) progressed much more rapidly in CDR-SB (1.61 boxes/year; p = 0.0077) and global scores (-0.53 points/year; p = 0.0002) than individuals with lower values (0.85 boxes/year and -0.15 points/year, respectively) over the follow-up period. CSF tau, p-tau181, tau/Aβ42, and p-tau181/Aβ42 also predicted more rapid cognitive decline in CDR-SB and global scores over time. Conclusion: These findings suggest that CSF VILIP-1 and VILIP-1/Aβ42 predict rates of global cognitive decline similarly to tau and tau/Aβ42, and may be useful CSF surrogates for neurodegeneration in early AD.
UR - http://www.scopus.com/inward/record.url?scp=84860832253&partnerID=8YFLogxK
U2 - 10.1212/WNL.0b013e318248e568
DO - 10.1212/WNL.0b013e318248e568
M3 - Article
C2 - 22357717
AN - SCOPUS:84860832253
SN - 0028-3878
VL - 78
SP - 709
EP - 719
JO - Neurology
JF - Neurology
IS - 10
ER -