TY - JOUR
T1 - CSF proteomics identifies early changes in autosomal dominant Alzheimer's disease
AU - Dominantly Inherited Alzheimer Network
AU - Shen, Yuanyuan
AU - Timsina, Jigyasha
AU - Heo, Gyujin
AU - Beric, Aleksandra
AU - Ali, Muhammad
AU - Wang, Ciyang
AU - Yang, Chengran
AU - Wang, Yueyao
AU - Western, Daniel
AU - Liu, Menghan
AU - Gorijala, Priyanka
AU - Budde, John
AU - Do, Anh
AU - Liu, Haiyan
AU - Gordon, Brian
AU - Llibre-Guerra, Jorge J.
AU - Joseph-Mathurin, Nelly
AU - Perrin, Richard J.
AU - Maschi, Dario
AU - Wyss-Coray, Tony
AU - Pastor, Pau
AU - Renton, Alan E.
AU - Surace, Ezequiel I.
AU - Johnson, Erik C.B.
AU - Levey, Allan I.
AU - Alvarez, Ignacio
AU - Levin, Johannes
AU - Ringman, John M.
AU - Allegri, Ricardo Francisco
AU - Seyfried, Nicholas
AU - Day, Gregg S.
AU - Wu, Qisi
AU - Fernández, M. Victoria
AU - Tarawneh, Rawan
AU - McDade, Eric
AU - Morris, John C.
AU - Bateman, Randall J.
AU - Goate, Alison
AU - Noble, James M.
AU - Day, Gregory
AU - Graff-Radford, Neill R.
AU - Voglein, Jonathan
AU - Allegri, Ricardo
AU - Mendez, Patricio Chrem
AU - Surace, Ezequiel
AU - Berman, Sarah B.
AU - Ikonomovic, Snezana
AU - Nadkarni, Neelesh
AU - Lopera, Francisco
AU - Ramirez, Laura
AU - Aguillon, David
AU - Leon, Yudy
AU - Ramos, Claudia
AU - Alzate, Diana
AU - Baena, Ana
AU - Londono, Natalia
AU - Mathias Jucker, Sonia Moreno
AU - Laske, Christoph
AU - Kuder-Buletta, Elke
AU - Graber-Sultan, Susanne
AU - Preische, Oliver
AU - Hofmann, Anna
AU - Ikeuchi, Takeshi
AU - Kasuga, Kensaku
AU - Niimi, Yoshiki
AU - Ishii, Kenji
AU - Senda, Michio
AU - Sanchez-Valle, Raquel
AU - Rosa-Neto, Pedro
AU - Fox, Nick
AU - Cash, Dave
AU - Lee, Jae Hong
AU - Roh, Jee Hoon
AU - Riddle, Meghan
AU - Menard, William
AU - Bodge, Courtney
AU - Surti, Mustafa
AU - Takada, Leonel Tadao
AU - Farlow, Martin
AU - Chhatwal, Jasmeer P.
AU - Sanchez-Gonzalez, V. J.
AU - Orozco-Barajas, Maribel
AU - Renton, Alan
AU - Esposito, Bianca
AU - Karch, Celeste M.
AU - Marsh, Jacob
AU - Cruchaga, Carlos
AU - Fernandez, Victoria
AU - Gordon, Brian A.
AU - Fagan, Anne M.
AU - Jerome, Gina
AU - Herries, Elizabeth
AU - Llibre-Guerra, Jorge
AU - Seyfried, Nicholas T.
AU - Schofield, Peter R.
AU - Brooks, William
AU - Bechara, Jacob
AU - Hassenstab, Jason
AU - Franklin, Erin
AU - Benzinger, Tammie L.S.
AU - Chen, Allison
AU - Chen, Charles
AU - Flores, Shaney
AU - Friedrichsen, Nelly
AU - Hantler, Nancy
AU - Hornbeck, Russ
AU - Jarman, Steve
AU - Keefe, Sarah
AU - Koudelis, Deborah
AU - Massoumzadeh, Parinaz
AU - McCullough, Austin
AU - McKay, Nicole
AU - Nicklaus, Joyce
AU - Pulizos, Christine
AU - Wang, Qing
AU - Mishall, Sheetal
AU - Sabaredzovic, Edita
AU - Deng, Emily
AU - Candela, Madison
AU - Smith, Hunter
AU - Hobbs, Diana
AU - Scott, Jalen
AU - Xiong, Chengjie
AU - Wang, Peter
AU - Xu, Xiong
AU - Li, Yan
AU - Gremminger, Emily
AU - Ma, Yinjiao
AU - Bui, Ryan
AU - Lu, Ruijin
AU - Martins, Ralph
AU - Sosa Ortiz, Ana Luisa
AU - Daniels, Alisha
AU - Courtney, Laura
AU - Mori, Hiroshi
AU - Supnet-Bell, Charlene
AU - Xu, Jinbin
AU - Ringman, John
AU - Ibanez, Laura
AU - Sung, Yun Ju
N1 - Publisher Copyright:
© 2024 The Author(s)
PY - 2024/10/31
Y1 - 2024/10/31
N2 - In this high-throughput proteomic study of autosomal dominant Alzheimer's disease (ADAD), we sought to identify early biomarkers in cerebrospinal fluid (CSF) for disease monitoring and treatment strategies. We examined CSF proteins in 286 mutation carriers (MCs) and 177 non-carriers (NCs). The developed multi-layer regression model distinguished proteins with different pseudo-trajectories between these groups. We validated our findings with independent ADAD as well as sporadic AD datasets and employed machine learning to develop and validate predictive models. Our study identified 137 proteins with distinct trajectories between MCs and NCs, including eight that changed before traditional AD biomarkers. These proteins are grouped into three stages: early stage (stress response, glutamate metabolism, neuron mitochondrial damage), middle stage (neuronal death, apoptosis), and late presymptomatic stage (microglial changes, cell communication). The predictive model revealed a six-protein subset that more effectively differentiated MCs from NCs, compared with conventional biomarkers.
AB - In this high-throughput proteomic study of autosomal dominant Alzheimer's disease (ADAD), we sought to identify early biomarkers in cerebrospinal fluid (CSF) for disease monitoring and treatment strategies. We examined CSF proteins in 286 mutation carriers (MCs) and 177 non-carriers (NCs). The developed multi-layer regression model distinguished proteins with different pseudo-trajectories between these groups. We validated our findings with independent ADAD as well as sporadic AD datasets and employed machine learning to develop and validate predictive models. Our study identified 137 proteins with distinct trajectories between MCs and NCs, including eight that changed before traditional AD biomarkers. These proteins are grouped into three stages: early stage (stress response, glutamate metabolism, neuron mitochondrial damage), middle stage (neuronal death, apoptosis), and late presymptomatic stage (microglial changes, cell communication). The predictive model revealed a six-protein subset that more effectively differentiated MCs from NCs, compared with conventional biomarkers.
KW - Somascan
KW - autosomal dominant Alzheimer's disease
KW - microglia
KW - mitochondrial damage
KW - neurodegeneration
KW - neuronal death
KW - proteomics
KW - pseudotrajectory analysis
UR - http://www.scopus.com/inward/record.url?scp=85207336001&partnerID=8YFLogxK
U2 - 10.1016/j.cell.2024.08.049
DO - 10.1016/j.cell.2024.08.049
M3 - Article
C2 - 39332414
AN - SCOPUS:85207336001
SN - 0092-8674
VL - 187
SP - 6309-6326.e15
JO - Cell
JF - Cell
IS - 22
ER -