TY - JOUR
T1 - Crystal structure of the TRANCE/RANKL cytokine reveals determinants of receptor-ligand specificity
AU - Lam, Jonathan
AU - Nelson, Christopher A.
AU - Ross, F. Patrick
AU - Teitelbaum, Steven L.
AU - Fremont, Daved H.
PY - 2001
Y1 - 2001
N2 - RANK, the receptor activator of NF-κB, and its ligand RANKL (initially termed TRANCE, also termed ODF and OPGL), are a TNF superfamily receptor-ligand pair that govern the development and function of osteoclasts, lymphoid tissue, and mammary epithelium. While TNF family cytokines share a common structural scaffold, individual receptor-ligand pairs associate with high specificity. Given the low level of amino acid conservation among members of the TNF superfamily, the means by which these molecules achieve specificity cannot be completely understood without knowledge of their three-dimensional structures. To determine the elements of RANKL that mediate RANK activation, we have crystallized the ectodomain of murine RANKL and solved its structure to a resolution of 2.6 Å. RANKL self-associates as a homotrimer with four unique surface loops that distinguish it from other TNF family cytokines. Mutagenesis of selected residues in these loops significantly modulates RANK activation, as evidenced by in vitro osteoclastogenesis, thereby establishing their necessity in mediating the biological activities of RANKL. Such structural determinants of RANKL-RANK specificity may be of relevance in the pharmacologic design of compounds to ameliorate osteopenic disorders of bone.
AB - RANK, the receptor activator of NF-κB, and its ligand RANKL (initially termed TRANCE, also termed ODF and OPGL), are a TNF superfamily receptor-ligand pair that govern the development and function of osteoclasts, lymphoid tissue, and mammary epithelium. While TNF family cytokines share a common structural scaffold, individual receptor-ligand pairs associate with high specificity. Given the low level of amino acid conservation among members of the TNF superfamily, the means by which these molecules achieve specificity cannot be completely understood without knowledge of their three-dimensional structures. To determine the elements of RANKL that mediate RANK activation, we have crystallized the ectodomain of murine RANKL and solved its structure to a resolution of 2.6 Å. RANKL self-associates as a homotrimer with four unique surface loops that distinguish it from other TNF family cytokines. Mutagenesis of selected residues in these loops significantly modulates RANK activation, as evidenced by in vitro osteoclastogenesis, thereby establishing their necessity in mediating the biological activities of RANKL. Such structural determinants of RANKL-RANK specificity may be of relevance in the pharmacologic design of compounds to ameliorate osteopenic disorders of bone.
UR - http://www.scopus.com/inward/record.url?scp=0034784606&partnerID=8YFLogxK
U2 - 10.1172/JCI13890
DO - 10.1172/JCI13890
M3 - Article
C2 - 11581298
AN - SCOPUS:0034784606
SN - 0021-9738
VL - 108
SP - 971
EP - 979
JO - Journal of Clinical Investigation
JF - Journal of Clinical Investigation
IS - 7
ER -