TY - JOUR
T1 - Credentialing features
T2 - A platform to benchmark and optimize untargeted metabolomic methods
AU - Mahieu, Nathaniel Guy
AU - Huang, Xiaojing
AU - Chen, Ying Jr
AU - Patti, Gary J.
N1 - Publisher Copyright:
© 2014 American Chemical Society.
PY - 2014/10/7
Y1 - 2014/10/7
N2 - The aim of untargeted metabolomics is to profile as many metabolites as possible, yet a major challenge is comparing experimental method performance on the basis of metabolome coverage. To date, most published approaches have compared experimental methods by counting the total number of features detected. Due to artifactual interference, however, this number is highly variable and therefore is a poor metric for comparing metabolomic methods. Here we introduce an alternative approach to benchmarking metabolome coverage which relies on mixed Escherichia coli extracts from cells cultured in regular and 13C-enriched media. After mass spectrometry-based metabolomic analysis of these extracts, we credential features arising from E. coli metabolites on the basis of isotope spacing and intensity. This credentialing platform enables us to accurately compare the number of nonartifactual features yielded by different experimental approaches. We highlight the value of our platform by reoptimizing a published untargeted metabolomic method for XCMS data processing. Compared to the published parameters, the new XCMS parameters decrease the total number of features by 15% (a reduction in noise features) while increasing the number of true metabolites detected and grouped by 20%. Our credentialing platform relies on easily generated E. coli samples and a simple software algorithm that is freely available on our laboratory Web site (http://pattilab.wustl.edu/software/credential/). We have validated the credentialing platform with reversed-phase and hydrophilic interaction liquid chromatography as well as Agilent, Thermo Scientific, AB SCIEX, and LECO mass spectrometers. Thus, the credentialing platform can readily be applied by any laboratory to optimize their untargeted metabolomic pipeline for metabolite extraction, chromatographic separation, mass spectrometric detection, and bioinformatic processing.
AB - The aim of untargeted metabolomics is to profile as many metabolites as possible, yet a major challenge is comparing experimental method performance on the basis of metabolome coverage. To date, most published approaches have compared experimental methods by counting the total number of features detected. Due to artifactual interference, however, this number is highly variable and therefore is a poor metric for comparing metabolomic methods. Here we introduce an alternative approach to benchmarking metabolome coverage which relies on mixed Escherichia coli extracts from cells cultured in regular and 13C-enriched media. After mass spectrometry-based metabolomic analysis of these extracts, we credential features arising from E. coli metabolites on the basis of isotope spacing and intensity. This credentialing platform enables us to accurately compare the number of nonartifactual features yielded by different experimental approaches. We highlight the value of our platform by reoptimizing a published untargeted metabolomic method for XCMS data processing. Compared to the published parameters, the new XCMS parameters decrease the total number of features by 15% (a reduction in noise features) while increasing the number of true metabolites detected and grouped by 20%. Our credentialing platform relies on easily generated E. coli samples and a simple software algorithm that is freely available on our laboratory Web site (http://pattilab.wustl.edu/software/credential/). We have validated the credentialing platform with reversed-phase and hydrophilic interaction liquid chromatography as well as Agilent, Thermo Scientific, AB SCIEX, and LECO mass spectrometers. Thus, the credentialing platform can readily be applied by any laboratory to optimize their untargeted metabolomic pipeline for metabolite extraction, chromatographic separation, mass spectrometric detection, and bioinformatic processing.
UR - http://www.scopus.com/inward/record.url?scp=84907903688&partnerID=8YFLogxK
U2 - 10.1021/ac503092d
DO - 10.1021/ac503092d
M3 - Article
C2 - 25160088
AN - SCOPUS:84907903688
SN - 0003-2700
VL - 86
SP - 9583
EP - 9589
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 19
ER -