Abstract
Major histocompatibility complex (MHC) class I molecules assemble with peptides in the ER lumen and are transported via Golgi to the plasma membrane for recognition by T cells. Inhibiting MHC assembly, transport, and surface expression are common viral strategies of evading immune recognition. Cowpox virus, a clinically relevant orthopoxvirus, downregulates MHC class I expression on infected cells. However, the viral protein(s) and mechanisms responsible are unknown. We identify CPXV203 as a cowpox virus protein that associates with fully assembled MHC class I molecules and blocks their transport through the Golgi. A C-terminal KTEL motif in CPXV203 closely resembles the canonical ER retention motif KDEL and is required for CPXV203 function, indicating that a physiologic pathway is exploited to retain MHC class I in the ER. This viral mechanism for MHC class I downregulation may explain virulence differences between clinical isolates of orthopoxviruses.
Original language | English |
---|---|
Pages (from-to) | 306-315 |
Number of pages | 10 |
Journal | Cell Host and Microbe |
Volume | 2 |
Issue number | 5 |
DOIs | |
State | Published - Nov 15 2007 |
Keywords
- CELLBIO
- MICROBIO
- MOLIMMUNO