TY - JOUR
T1 - Correlation between estimates of tumor perfusion from microbubble contrast-enhanced sonography and dynamic contrast-enhanced magnetic resonance imaging
AU - Yankeelov, Thomas E.
AU - Niermann, Kenneth J.
AU - Huamani, Jessica
AU - Kim, Dong W.
AU - Quarles, Christopher C.
AU - Fleischer, Arthur C.
AU - Hallahan, Dennis E.
AU - Price, Ronald R.
AU - Gore, John C.
PY - 2006/4
Y1 - 2006/4
N2 - Objective. We compared measurements of tumor perfusion from microbubble contrast-enhanced sonography (MCES) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in an animal tumor model. Methods. Seven mice were implanted with Lewis lung carcinoma cells on their hind limbs and imaged 14 days later with a Philips 5- to 7-MHz sonography system (Philips Medical Systems, Andover, MA) and a Varian 7.0-T MRI system (Varian, Inc, Palo Alto, CA). For sonographic imaging 100 μL of a perfluoropropane microbubble contrast agent (Definity; Bristol-Myers Squibb Medical Imaging, Billerica, MA) was injected and allowed to reach a pseudo steady state, after which a high-mechanical index pulse was delivered to destroy the microbubbles within the field of view, and the replenishment of the microbubbles was imaged for 30 to 60 seconds. The MRI included acquisition of a T10 map and 35 serial T1- weighted images (repetition time, 100 milliseconds; echo time, 3.1 milliseconds; α, 30°) after the injection of 100 μL of 0.2-mmol/kg gadopentetate dimeglumine (Magnevist; Berlex, Wayne, NJ). Region-of-interest and voxel-by-voxel analyses of both data sets were performed; microbubble contrast-enhanced sonography returned estimates of microvessel cross-sectional area, microbubble velocity, and mean blood flow, whereas DCE-MRI returned estimates of a perfusion-permeability index and the extravascular extracellular volume fraction. Results. Comparing similar regions of tumor tissue seen on sonography and MRI, region-of-interest analyses revealed a strong (r2 = 0.57) and significant relationship (P < .002) between the estimates of perfusion obtained by the two modalities. Conclusions. Microbubble contrast-enhanced sonography can effectively depict intratumoral heterogeneity in preclinical xenograft models when voxel-by-voxel analysis is performed, and this analysis correlates with similar DCE-MRI measurements.
AB - Objective. We compared measurements of tumor perfusion from microbubble contrast-enhanced sonography (MCES) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in an animal tumor model. Methods. Seven mice were implanted with Lewis lung carcinoma cells on their hind limbs and imaged 14 days later with a Philips 5- to 7-MHz sonography system (Philips Medical Systems, Andover, MA) and a Varian 7.0-T MRI system (Varian, Inc, Palo Alto, CA). For sonographic imaging 100 μL of a perfluoropropane microbubble contrast agent (Definity; Bristol-Myers Squibb Medical Imaging, Billerica, MA) was injected and allowed to reach a pseudo steady state, after which a high-mechanical index pulse was delivered to destroy the microbubbles within the field of view, and the replenishment of the microbubbles was imaged for 30 to 60 seconds. The MRI included acquisition of a T10 map and 35 serial T1- weighted images (repetition time, 100 milliseconds; echo time, 3.1 milliseconds; α, 30°) after the injection of 100 μL of 0.2-mmol/kg gadopentetate dimeglumine (Magnevist; Berlex, Wayne, NJ). Region-of-interest and voxel-by-voxel analyses of both data sets were performed; microbubble contrast-enhanced sonography returned estimates of microvessel cross-sectional area, microbubble velocity, and mean blood flow, whereas DCE-MRI returned estimates of a perfusion-permeability index and the extravascular extracellular volume fraction. Results. Comparing similar regions of tumor tissue seen on sonography and MRI, region-of-interest analyses revealed a strong (r2 = 0.57) and significant relationship (P < .002) between the estimates of perfusion obtained by the two modalities. Conclusions. Microbubble contrast-enhanced sonography can effectively depict intratumoral heterogeneity in preclinical xenograft models when voxel-by-voxel analysis is performed, and this analysis correlates with similar DCE-MRI measurements.
KW - Dynamic contrast-enhanced magnetic resonance imaging
KW - Microbubble contrast-enhanced sonography
KW - Microbubbles
KW - Tumor
UR - http://www.scopus.com/inward/record.url?scp=33646058887&partnerID=8YFLogxK
U2 - 10.7863/jum.2006.25.4.487
DO - 10.7863/jum.2006.25.4.487
M3 - Article
C2 - 16567438
AN - SCOPUS:33646058887
SN - 0278-4297
VL - 25
SP - 487
EP - 497
JO - Journal of Ultrasound in Medicine
JF - Journal of Ultrasound in Medicine
IS - 4
ER -