TY - JOUR
T1 - Coordinated increase in inhibitory and excitatory synapses onto retinal ganglion cells during development
AU - Soto, Florentina
AU - Bleckert, Adam
AU - Lewis, Renate
AU - Kang, Yunhee
AU - Kerschensteiner, Daniel
AU - Craig, Ann Marie
AU - Wong, Rachel O.L.
N1 - Funding Information:
Supported by NIH grant EY10699 to R.O.W and a Canadian Institutes of Health Research grant MOP-69096 to A.M.C. A.B. is supported a Developmental Biology Predoctoral Training Grant T32HD007183 from the National Institute of Child Health and Human Development. We thank Dr. Mrinalini Hoon for many helpful comments on the manuscript.
PY - 2011/8/24
Y1 - 2011/8/24
N2 - Background: Neuronal output is shaped by a balance of excitation and inhibition. How this balance is attained in the central nervous system during development is not well understood, and is complicated by the fact that, in vivo, GABAergic and glycinergic synaptogenesis precedes that of glutamatergic synapses. Here, we determined the distributions of inhibitory postsynaptic sites on the dendritic arbors of individual neurons, and compared their developmental patterns with that of excitatory postsynaptic sites. We focused on retinal ganglion cells (RGCs), the output neurons of the retina, which receive excitatory input from bipolar cells and inhibitory input from amacrine cells. To visualize and map inhibitory postsynaptic sites, we generated transgenic mice in which RGCs express fluorescently tagged Neuroligin 2 (YFP-NL2) under the control of the Thy1 promoter. By labeling RGC dendrites biolistically in YFP-NL2-expressing retinas, we were able to map the spatial distribution and thus densities of inhibitory postsynaptic sites on the dendritic arbors of individual large-field RGCs across ages.Results: We demonstrate that YFP-NL2 is present at inhibitory synapses in the inner plexiform layer by its co-localization with gephyrin, the γ2 subunit of the GABAA receptor and glycine receptors. YFP-NL2 puncta were apposed to the vesicular inhibitory transmitter transporter VGAT but not to CtBP2, a marker of presynaptic ribbons found at bipolar cell terminals. Similar patterns of co-localization with synaptic markers were observed for endogenous NL2. We also verified that expression of YFP-NL2 in the transgenic line did not significantly alter spontaneous inhibitory synaptic transmission onto RGCs. Using these mice, we found that, on average, the density of inhibitory synapses on individual arbors increased gradually until eye opening (postnatal day 15). A small centro-peripheral gradient in density found in mature arbors was apparent at the earliest age we examined (postnatal day 8). Unexpectedly, the adult ratio of inhibitory/excitatory postsynaptic sites was rapidly attained, shortly after glutamatergic synaptogenesis commenced (postnatal day 7).Conclusion: Our observations suggest that bipolar and amacrine cell synaptogenesis onto RGCs appear coordinated to rapidly attain a balanced ratio of excitatory and inhibitory synapse densities prior to the onset of visual experience.
AB - Background: Neuronal output is shaped by a balance of excitation and inhibition. How this balance is attained in the central nervous system during development is not well understood, and is complicated by the fact that, in vivo, GABAergic and glycinergic synaptogenesis precedes that of glutamatergic synapses. Here, we determined the distributions of inhibitory postsynaptic sites on the dendritic arbors of individual neurons, and compared their developmental patterns with that of excitatory postsynaptic sites. We focused on retinal ganglion cells (RGCs), the output neurons of the retina, which receive excitatory input from bipolar cells and inhibitory input from amacrine cells. To visualize and map inhibitory postsynaptic sites, we generated transgenic mice in which RGCs express fluorescently tagged Neuroligin 2 (YFP-NL2) under the control of the Thy1 promoter. By labeling RGC dendrites biolistically in YFP-NL2-expressing retinas, we were able to map the spatial distribution and thus densities of inhibitory postsynaptic sites on the dendritic arbors of individual large-field RGCs across ages.Results: We demonstrate that YFP-NL2 is present at inhibitory synapses in the inner plexiform layer by its co-localization with gephyrin, the γ2 subunit of the GABAA receptor and glycine receptors. YFP-NL2 puncta were apposed to the vesicular inhibitory transmitter transporter VGAT but not to CtBP2, a marker of presynaptic ribbons found at bipolar cell terminals. Similar patterns of co-localization with synaptic markers were observed for endogenous NL2. We also verified that expression of YFP-NL2 in the transgenic line did not significantly alter spontaneous inhibitory synaptic transmission onto RGCs. Using these mice, we found that, on average, the density of inhibitory synapses on individual arbors increased gradually until eye opening (postnatal day 15). A small centro-peripheral gradient in density found in mature arbors was apparent at the earliest age we examined (postnatal day 8). Unexpectedly, the adult ratio of inhibitory/excitatory postsynaptic sites was rapidly attained, shortly after glutamatergic synaptogenesis commenced (postnatal day 7).Conclusion: Our observations suggest that bipolar and amacrine cell synaptogenesis onto RGCs appear coordinated to rapidly attain a balanced ratio of excitatory and inhibitory synapse densities prior to the onset of visual experience.
UR - http://www.scopus.com/inward/record.url?scp=80052027753&partnerID=8YFLogxK
U2 - 10.1186/1749-8104-6-31
DO - 10.1186/1749-8104-6-31
M3 - Article
C2 - 21864334
AN - SCOPUS:80052027753
SN - 1749-8104
VL - 6
JO - Neural Development
JF - Neural Development
IS - 1
M1 - 31
ER -