TY - GEN
T1 - Convergence of Iterative Quadratic Programming for Robust Fixed-Endpoint Transfer of Bilinear Systems
AU - Baker, Luke S.
AU - Lima, Andre Luiz P.De
AU - Zlotnik, Anatoly
AU - Li, Jr Shin
AU - Martin, Michael J.
N1 - Publisher Copyright:
© 2024 IEEE.
PY - 2024
Y1 - 2024
N2 - We present a computational method for open-loop minimum-norm control synthesis for fixed-endpoint transfer of bilinear ensemble systems that are indexed by two continuously varying parameters. We suppose that one ensemble parameter scales the homogeneous, linear part of the dynamics, and the second parameter scales the effect of the applied control inputs on the inhomogeneous, bilinear dynamics. This class of dynamical systems is motivated by robust quantum control pulse synthesis, where the ensemble parameters correspond to uncertainty in the free Hamiltonian and inhomogeneity in the control Hamiltonian, respectively. Our computational method is based on polynomial approximation of the ensemble state in parameter space and discretization of the evolution equations in the time domain using a product of matrix exponentials corresponding to zero-order hold controls over the time intervals. The dynamics are successively linearized about control and trajectory iterates to formulate a sequence of quadratic programs for computing perturbations to the control that successively improve the objective until the iteration converges. We use a two-stage computation to first ensure transfer to the desired terminal state, and then minimize the norm of the control function. The method is demonstrated for the canonical uniform transfer problem for the Bloch system that appears in nuclear magnetic resonance, as well as the matter-wave splitting problem for the Raman-Nath system that appears in ultra-cold atom interferometry.
AB - We present a computational method for open-loop minimum-norm control synthesis for fixed-endpoint transfer of bilinear ensemble systems that are indexed by two continuously varying parameters. We suppose that one ensemble parameter scales the homogeneous, linear part of the dynamics, and the second parameter scales the effect of the applied control inputs on the inhomogeneous, bilinear dynamics. This class of dynamical systems is motivated by robust quantum control pulse synthesis, where the ensemble parameters correspond to uncertainty in the free Hamiltonian and inhomogeneity in the control Hamiltonian, respectively. Our computational method is based on polynomial approximation of the ensemble state in parameter space and discretization of the evolution equations in the time domain using a product of matrix exponentials corresponding to zero-order hold controls over the time intervals. The dynamics are successively linearized about control and trajectory iterates to formulate a sequence of quadratic programs for computing perturbations to the control that successively improve the objective until the iteration converges. We use a two-stage computation to first ensure transfer to the desired terminal state, and then minimize the norm of the control function. The method is demonstrated for the canonical uniform transfer problem for the Bloch system that appears in nuclear magnetic resonance, as well as the matter-wave splitting problem for the Raman-Nath system that appears in ultra-cold atom interferometry.
UR - http://www.scopus.com/inward/record.url?scp=86000487678&partnerID=8YFLogxK
U2 - 10.1109/CDC56724.2024.10885932
DO - 10.1109/CDC56724.2024.10885932
M3 - Conference contribution
AN - SCOPUS:86000487678
T3 - Proceedings of the IEEE Conference on Decision and Control
SP - 8740
EP - 8747
BT - 2024 IEEE 63rd Conference on Decision and Control, CDC 2024
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 63rd IEEE Conference on Decision and Control, CDC 2024
Y2 - 16 December 2024 through 19 December 2024
ER -