We have examined the control of actin isoform synthesis by pituitary-derived fibroblast growth factor and serum in BC3H1 cells, a tumor-derived nonfusing muscle cell line. Under differentiating conditions in BC3H1 cells, the synthesis of beta- and gamma-actin ceases, and the rate of alpha-actin synthesis is increased concomitant with cessation of cell growth. Addition of fetal calf serum to differentiated cells reverses the process, whereas the addition of pituitary-derived fibroblast growth factor inhibits synthesis of alpha-actin but fails to induce the synthesis of beta- and gamma-actin. Analysis of RNA from differentiated BC3H1 cells after the addition of fetal calf serum indicated that the serum-induced increase in beta- and gamma-actin synthesis reflected an increase in their mRNA levels. In contrast, the repression of alpha-actin synthesis by fetal calf serum or fibroblast growth factor appears to reflect the translation efficiency of alpha-actin mRNA. Fibroblast growth factor is a competence factor for BC3H1 cells which allows them to progress from G0 4 h into the G1 phase of the cell cycle. In order to understand the nature of the intracellular signals responsible for the effect of fibroblast growth factor, we treated cells with vanadate, a known inhibitor of tyrosine-specific protein phosphatases. Vanadate fully mimics the action of fibroblast growth on actin synthesis and creatine phosphokinase synthesis and causes BC3H1 cells to exit the G0 portion of the cell cycle, as demonstrated by the induction of the c-fos proto-oncogene following addition of serum, vanadate, or bovine pituitary-derived fibroblast growth factor to these cells. We conclude that repression of alpha-actin synthesis and induction of the synthesis of beta- and gamma-actin are under independent control and that the induction of beta- and gamma-nonmuscle actin synthesis following serum addition is independent from movement into the cell cycle, and dependent on as yet unidentified serum components. The rate of synthesis of alpha-actin can be controlled by a defined mitogenic polypeptide fibroblast growth factor, which in short term experiments primarily affects the rate of translation of alpha-actin mRNA. The repression by fibroblast growth factor is most likely due to activation of a tyrosine specific protein kinase(s).

Original languageEnglish
Pages (from-to)1810-1817
Number of pages8
JournalJournal of Biological Chemistry
Issue number4
StatePublished - Feb 5 1987


Dive into the research topics of 'Control of muscle differentiation in BC3H1 cells by fibroblast growth factor and vanadate.'. Together they form a unique fingerprint.

Cite this