TY - JOUR
T1 - Constitutive Modeling of Mouse Arteries Suggests Changes in Directional Coupling and Extracellular Matrix Remodeling That Depend on Artery Type, Age, Sex, and Elastin Amounts
AU - Kailash, Keshav A.
AU - Hawes, Jie Z.
AU - Cocciolone, Austin J.
AU - Bersi, Matthew R.
AU - Mecham, Robert P.
AU - Wagenseil, Jessica E.
N1 - Publisher Copyright:
Copyright © 2024 by ASME.
PY - 2024/3/1
Y1 - 2024/3/1
N2 - Arterial stiffening occurs during natural aging, is associated with an increased risk of adverse cardiovascular events, and can follow different timelines in males and females. One mechanism of arterial stiffening includes remodeling of the extracellular matrix (ECM), which alters the wall material properties. We used elastin haploinsufficient (Elnþ/-) and wildtype (Elnþ/þ) mice to investigate how material properties of two different arteries (ascending aorta and carotid artery) change with age, sex, and ECM composition. We used a constitutive model by Dong and Sun that is based on the Holzapfel–Gasser–Ogden (HGO) type, but does not require a discrete number of fibrous ECM families and allows varied deformation coupling. We find that the amount of deformation coupling for the best fit model depends on the artery type. We also find that remodeling to maintain homeostatic (i.e., young, wildtype) values of biomechanical parameters with age, sex, and ECM composition depends on the artery type, with ascending aorta being more adaptable than carotid artery. Fitted material constants indicate sex-dependent remodeling that may be important for determining the time course of arterial stiffening in males and females. We correlated fitted material constants with ECM composition measured by biochemical (ascending aorta) or histological (carotid artery) methods. We show significant correlations between ECM composition and material parameters for the mean values for each group, with biochemical measurements correlating more strongly than histological measurements. Understanding how arterial stiffening depends on age, sex, ECM composition, and artery type may help design effective, personalized clinical treatment strategies.
AB - Arterial stiffening occurs during natural aging, is associated with an increased risk of adverse cardiovascular events, and can follow different timelines in males and females. One mechanism of arterial stiffening includes remodeling of the extracellular matrix (ECM), which alters the wall material properties. We used elastin haploinsufficient (Elnþ/-) and wildtype (Elnþ/þ) mice to investigate how material properties of two different arteries (ascending aorta and carotid artery) change with age, sex, and ECM composition. We used a constitutive model by Dong and Sun that is based on the Holzapfel–Gasser–Ogden (HGO) type, but does not require a discrete number of fibrous ECM families and allows varied deformation coupling. We find that the amount of deformation coupling for the best fit model depends on the artery type. We also find that remodeling to maintain homeostatic (i.e., young, wildtype) values of biomechanical parameters with age, sex, and ECM composition depends on the artery type, with ascending aorta being more adaptable than carotid artery. Fitted material constants indicate sex-dependent remodeling that may be important for determining the time course of arterial stiffening in males and females. We correlated fitted material constants with ECM composition measured by biochemical (ascending aorta) or histological (carotid artery) methods. We show significant correlations between ECM composition and material parameters for the mean values for each group, with biochemical measurements correlating more strongly than histological measurements. Understanding how arterial stiffening depends on age, sex, ECM composition, and artery type may help design effective, personalized clinical treatment strategies.
UR - http://www.scopus.com/inward/record.url?scp=85187197114&partnerID=8YFLogxK
U2 - 10.1115/1.4063272
DO - 10.1115/1.4063272
M3 - Article
C2 - 37646627
AN - SCOPUS:85187197114
SN - 0148-0731
VL - 146
JO - Journal of Biomechanical Engineering
JF - Journal of Biomechanical Engineering
IS - 5
M1 - 051001
ER -