TY - JOUR
T1 - Congruence, conflict, and polyploidization shown by nuclear and chloroplast markers in the monophyletic "bristle clade" (Paniceae, Panicoideae, Poaceae)
AU - Doust, Andrew N.
AU - Penly, Anya M.
AU - Jacobs, Surrey W.L.
AU - Kellogg, Elizabeth A.
PY - 2007/7
Y1 - 2007/7
N2 - Molecular phylogenetic analyses using the chloroplast marker ndhF and a single copy nuclear marker, knotted1, show that the panicoid grasses bearing sterile branches (bristles) in their inflorescences form a monophyletic group. The genus Cenchrus is monophyletic, and monophyly of Pennisetum cannot be ruled out. Setaria is not monophyletic, either as a whole, excluding the palm-leaved species from section Ptychophyllum, or excluding various uncertainly placed species such as S. grisebachii. There is also no evidence that Setaria and Paspalidium form a monophyletic group. The Australian genera Zygochloa, Spinifex, and Pseudoraphis are placed in the 'bristle clade', confirming that inflorescences of these grasses are homologous with the inflorescences composed of spikelets and sterile branchlets (bristles). Comparison of the nuclear and chloroplast gene trees identifies several taxa as tetra- or higher polyploids; these are confirmed by southern hybridization. In particular, the Australian species of Paspalidium are allopolyploid, a novel and unexpected result. Zuloagaea bulbosa, a species that lacks the synapomorphic bristles in its inflorescence, is confirmed as a morphologically anomalous member of the clade, and is clearly allopolyploid. This study demonstrates the utility of knotted1 as a phylogenetic marker; we show that it is single copy in diploid taxa and that it exhibits adequate variation to distinguish closely related species. Interestingly, inflorescence morphology correlates only partially with relationships suggested by either nuclear or chloroplast trees, suggesting that inflorescence form is easily changed over evolutionary time.
AB - Molecular phylogenetic analyses using the chloroplast marker ndhF and a single copy nuclear marker, knotted1, show that the panicoid grasses bearing sterile branches (bristles) in their inflorescences form a monophyletic group. The genus Cenchrus is monophyletic, and monophyly of Pennisetum cannot be ruled out. Setaria is not monophyletic, either as a whole, excluding the palm-leaved species from section Ptychophyllum, or excluding various uncertainly placed species such as S. grisebachii. There is also no evidence that Setaria and Paspalidium form a monophyletic group. The Australian genera Zygochloa, Spinifex, and Pseudoraphis are placed in the 'bristle clade', confirming that inflorescences of these grasses are homologous with the inflorescences composed of spikelets and sterile branchlets (bristles). Comparison of the nuclear and chloroplast gene trees identifies several taxa as tetra- or higher polyploids; these are confirmed by southern hybridization. In particular, the Australian species of Paspalidium are allopolyploid, a novel and unexpected result. Zuloagaea bulbosa, a species that lacks the synapomorphic bristles in its inflorescence, is confirmed as a morphologically anomalous member of the clade, and is clearly allopolyploid. This study demonstrates the utility of knotted1 as a phylogenetic marker; we show that it is single copy in diploid taxa and that it exhibits adequate variation to distinguish closely related species. Interestingly, inflorescence morphology correlates only partially with relationships suggested by either nuclear or chloroplast trees, suggesting that inflorescence form is easily changed over evolutionary time.
KW - Knotted1
KW - ndhF
KW - Pennisetum
KW - Phylogeny
KW - Setaria
UR - http://www.scopus.com/inward/record.url?scp=35848958588&partnerID=8YFLogxK
U2 - 10.1600/036364407782250670
DO - 10.1600/036364407782250670
M3 - Article
AN - SCOPUS:35848958588
SN - 0363-6445
VL - 32
SP - 531
EP - 544
JO - Systematic Botany
JF - Systematic Botany
IS - 3
ER -