Abstract
We introduce a novel condensing vapor phase polymerization (CVPP) strategy for depositing microtubes of the conducting polymer polypyrrole; these serve as one-dimensional hollow microstructures for storing electrochemical energy. In CVPP, water droplets are structure-directing templates for polypyrrole microtubes. Water vapor condensation and polymerization occur simultaneously - conformal coatings of microtubes deposit on porous substrates such as hard carbon fiber paper or glass fiber filter paper. A mechanistic evolution of the microtubular morphology is proposed and tested based on the mass transport of water and monomer vapors as well as on the reaction stoichiometry. A coating of PPy microtubes is characterized by a high reversible capacitance of 342 F g-1 at 5 mV s-1 throughout 5000 cycles of cyclic voltammetry and a low sheet resistance of 70.2 Ω □-1. The open tubular structure is controlled in situ during synthesis and leads to electrodes that exhibit electrochemical stability at high scanning rates up to 250 mV s-1 retaining all stored charge, even after extensive cycling at 25 mV s-1.
Original language | English |
---|---|
Pages (from-to) | 41496-41504 |
Number of pages | 9 |
Journal | ACS Applied Materials and Interfaces |
Volume | 9 |
Issue number | 47 |
DOIs | |
State | Published - Nov 29 2017 |
Keywords
- condensation
- conducting polymers
- energy storage
- microtubes
- self-assembly