Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning

Issam El Naqa, Deshan Yang, Aditya Apte, Divya Khullar, Sasa Mutic, Jie Zheng, Jeffrey D. Bradley, Perry Grigsby, Joseph O. Deasy

Research output: Contribution to journalArticle

86 Scopus citations

Abstract

Multimodality imaging information is regularly used now in radiotherapy treatment planning for cancer patients. The authors are investigating methods to take advantage of all the imaging information available for joint target registration and segmentation, including multimodality images or multiple image sets from the same modality. In particular, the authors have developed variational methods based on multivalued level set deformable models for simultaneous 2D or 3D segmentation of multimodality images consisting of combinations of coregistered PET, CT, or MR data sets. The combined information is integrated to define the overall biophysical structure volume. The authors demonstrate the methods on three patient data sets, including a nonsmall cell lung cancer case with PET/CT, a cervix cancer case with PET/CT, and a prostate patient case with CT and MRI. CT, PET, and MR phantom data were also used for quantitative validation of the proposed multimodality segmentation approach. The corresponding Dice similarity coefficient (DSC) was 0.90±0.02 (p<0.0001) with an estimated target volume error of 1.28±1.23% volume. Preliminary results indicate that concurrent multimodality segmentation methods can provide a feasible and accurate framework for combining imaging data from different modalities and are potentially useful tools for the delineation of biophysical structure volumes in radiotherapy treatment planning.

Original languageEnglish
Pages (from-to)4738-4749
Number of pages12
JournalMedical physics
Volume34
Issue number12
DOIs
StatePublished - Jan 1 2007

Keywords

  • Active contours
  • Multimodality imaging
  • Segmentation
  • Treatment planning

Fingerprint Dive into the research topics of 'Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning'. Together they form a unique fingerprint.

  • Cite this