Abstract

The worldwide incidence of melanoma is rising faster than any other cancer, and prognosis for patients with metastatic disease is poor. Current targeted therapies are limited in their durability and/or effect size in certain patient populations due to acquired mechanisms of resistance. Thus, the development of synergistic combinatorial treatment regimens holds great promise to improve patient outcomes. We have previously shown that a model for in-silico knowledge discovery, Translational Ontology-anchored Knowledge Discovery Engine (TOKEn), is able to generate valid relationships between bimolecular and clinical phenotypes. In this study, we have aggregated observational and canonical knowledge consisting of melanoma-related biomolecular entities and targeted therapeutics in a computationally tractable model. We demonstrate here that the explicit linkage of therapeutic modalities with biomolecular underpinnings of melanoma utilizing the TOKEn pipeline yield a set of informed relationships that have the potential to generate combination therapy strategies.

Original languageEnglish
Title of host publicationMEDINFO 2015
Subtitle of host publicationeHealth-Enabled Health - Proceedings of the 15th World Congress on Health and Biomedical Informatics
EditorsAndrew Georgiou, Indra Neil Sarkar, Paulo Mazzoncini de Azevedo Marques
PublisherIOS Press
Pages663-667
Number of pages5
ISBN (Electronic)9781614995630
DOIs
StatePublished - 2015
Event15th World Congress on Health and Biomedical Informatics, MEDINFO 2015 - Sao Paulo, Brazil
Duration: Aug 19 2015Aug 23 2015

Publication series

NameStudies in Health Technology and Informatics
Volume216
ISSN (Print)0926-9630
ISSN (Electronic)1879-8365

Conference

Conference15th World Congress on Health and Biomedical Informatics, MEDINFO 2015
Country/TerritoryBrazil
CitySao Paulo
Period08/19/1508/23/15

Keywords

  • Combination Drug Therapy
  • Knowledgebases
  • Malignant Melanoma

Fingerprint

Dive into the research topics of 'Conceptual Knowledge Discovery in Databases for Drug Combinations Predictions in Malignant Melanoma'. Together they form a unique fingerprint.

Cite this