Composite Perovskites of Cesium Lead Bromide for Optimized Photoluminescence

Yichuan Ling, Lei Tan, Xi Wang, Yan Zhou, Yan Xin, Biwu Ma, Kenneth Hanson, Hanwei Gao

Research output: Contribution to journalArticlepeer-review

120 Scopus citations

Abstract

The halide perovskite CsPbBr3 has shown its promise for green light-emitting diodes. The optimal conditions of photoluminescence and the underlying photophysics, however, remain controversial. To address the inconsistency seen in the previous reports and to offer high-quality luminescent materials that can be readily integrated into functional devices with layered architecture, we created thin films of CsPbBr3/Cs4PbBr6 composites based on a dual-source vapor-deposition method. With the capability of tuning the material composition in a broad range, CsPbBr3 is identified as the only light emitter in the composites. Interestingly, the presence of the photoluminescence-inactive Cs4PbBr6 can significantly enhance the light emitting efficiency of the composites. The unique negative thermal quenching observed near the liquid nitrogen temperature indicates that a type of shallow state generated at the CsPbBr3/Cs4PbBr6 interfaces is responsible for the enhancement of photoluminescence.

Original languageEnglish
Pages (from-to)3266-3271
Number of pages6
JournalJournal of Physical Chemistry Letters
Volume8
Issue number14
DOIs
StatePublished - Jul 20 2017

Fingerprint

Dive into the research topics of 'Composite Perovskites of Cesium Lead Bromide for Optimized Photoluminescence'. Together they form a unique fingerprint.

Cite this