TY - JOUR
T1 - Complete Structural Elucidation of Triacylglycerols by Tandem Sector Mass Spectrometry
AU - Cheng, Changfu
AU - Gross, Michael L.
AU - Pittenauer, Ernst
PY - 1998/10/15
Y1 - 1998/10/15
N2 - We developed a method to elucidate the complete structure of triacylglycerols by means of high-energy collisional activation tandem mass spectrometry (MS/MS). Both ESI- and FAB-produced [M + NH4]+ and [M + met.]+ ions (where met. = Li, Na, and Cs) of triacylglycerols undergo charge-remote and charge-driven fragmentations. We emphasize the study of fragment ions from ESI-produced [M + NH4]+ and [M + Na]+ ions and FAB-produced [M + Na]+ ions. ESI-produced [M + NH4]+ ions fragment to produce four types of ions, [M + NH4 - RnCOONH4]+, [RnCO + 128]+, [RnCO + 74]+, and RnCO+ ions, from which the carbon number and the degree of unsaturation of each acyl group are obtained. In addition, three series of ions are produced by charge-remote fragmentations (CRFs), and analysis of their patterns gives the position and the number of double bonds on the acyl groups. Information about the position of each acyl group on the glycerol backbone, however, is not provided by collisionally activated dissociation of [M + NH4]+ ions. On the other hand, ESI- and FAB-produced [M + Na]+ ions fragment to form eight types of ions (named A-J ions) that, like those produced by CRF, are highly structurally informative. The absence of certain series members also carries useful structural information. Interpretation of these patterns enables one to obtain the number of carbons, degrees of unsaturation, and location of double bonds, as well as the positions of acyl groups on the glycerol backbone.
AB - We developed a method to elucidate the complete structure of triacylglycerols by means of high-energy collisional activation tandem mass spectrometry (MS/MS). Both ESI- and FAB-produced [M + NH4]+ and [M + met.]+ ions (where met. = Li, Na, and Cs) of triacylglycerols undergo charge-remote and charge-driven fragmentations. We emphasize the study of fragment ions from ESI-produced [M + NH4]+ and [M + Na]+ ions and FAB-produced [M + Na]+ ions. ESI-produced [M + NH4]+ ions fragment to produce four types of ions, [M + NH4 - RnCOONH4]+, [RnCO + 128]+, [RnCO + 74]+, and RnCO+ ions, from which the carbon number and the degree of unsaturation of each acyl group are obtained. In addition, three series of ions are produced by charge-remote fragmentations (CRFs), and analysis of their patterns gives the position and the number of double bonds on the acyl groups. Information about the position of each acyl group on the glycerol backbone, however, is not provided by collisionally activated dissociation of [M + NH4]+ ions. On the other hand, ESI- and FAB-produced [M + Na]+ ions fragment to form eight types of ions (named A-J ions) that, like those produced by CRF, are highly structurally informative. The absence of certain series members also carries useful structural information. Interpretation of these patterns enables one to obtain the number of carbons, degrees of unsaturation, and location of double bonds, as well as the positions of acyl groups on the glycerol backbone.
UR - http://www.scopus.com/inward/record.url?scp=0032531545&partnerID=8YFLogxK
U2 - 10.1021/ac9805192
DO - 10.1021/ac9805192
M3 - Article
C2 - 9796425
AN - SCOPUS:0032531545
SN - 0003-2700
VL - 70
SP - 4417
EP - 4426
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 20
ER -