TY - JOUR
T1 - Comparison of the reactivity of tetradecenoic acids, a triacsin, and unsaturated oximes with four purified Saccharomyces cerevisiae fatty acid activation proteins
AU - Knoll, L. J.
AU - Schall, O. F.
AU - Suzuki, I.
AU - Gokel, G. W.
AU - Gordon, J. I.
PY - 1995
Y1 - 1995
N2 - Saccharomyces cerevisiae contains at least five acyl-CoA synthetases (fatty acid activation proteins, or Faaps). Four FAA genes have been recovered to date. Recent genetic studies indicate that Faa1p and Faa4p are involved in the activation of imported fatty acids, while Faa2p activates endogenous pools of fatty acids. We have now purified Faa4p from S. cerevisiae and compared its fatty acid substrate specificity in vitro with the specificities of purified Faa1p, Faa2p, and Faa3p. Among C8-C18 saturated fatty acids, Faa4p and Faa1p both prefer C14:0. Surveys of C14 fatty acids with single cis-double bonds at C2-C12 indicated that Faa4p and Faa1p prefer Z9-tetradecenoic acid, although Faa4p's preference is much greater and also evident in C16 and C18 fatty acids. Faa4p's selectivity for fatty acids with a C9-C10 cis-double bond is a feature it shares with Faa3p and is notable since in yeast Ole1p, a microsomal cis-Δ9 desaturase, accounts for de novo production of monoenoic acyl-CoAs from saturated acyl-CoA substrates. Faa4p has no detectable acyl-CoA synthetase activity when incubated with tetradecenoic acids having a trans-double bond at C2-3, C4-5, C5-6, C6-7, C7- 8, or C9-10. Faa3p can only use E9-tetradecenoic acid as a substrate, while E4-, E6- and E9-tetradecenoic acids can be used by Faa1p and Faa2p. E2- tetradecenoic acid is an Faap inhibitor, with Faa2p exhibiting the greatest sensitivity (IC50 = 2.6 ± 0.2 μM). Triacsin C (1-hydroxy-3- (E,E,E,2',4',7'-undecatrienylidine)-1,2,3-triazene) has trans-double bonds at positions that correspond to those in E2-, E5-, and E7-tetradecenoic acids. This compound is a potent inhibitor of Faa2p (K(i) = 15 ± 1 nM; competitive with fatty acid), less potent against Faa4p (K(i) = 2 μM), and not active against Faa1p or Faa3p (IC50 > 500 μM). Analysis of an n-tetradecanal plus a series of oximes (tridecanal oxime, 1-azadeca-1,3,5-trienol, and 1-azaun- deca-1,3,5-trienol) indicated that the combination of an azenol moiety (R- CH=N-OH) plus adjacent unsaturation are critical for triacsin C's selective inhibition of Faa2p. Triacsin C and oxime derivatives appear to be very useful for defining differences in molecular recognition among S. cerevisiae acyl-CoA synthetases. The >25,000-fold range in the inhibitory effects of triacsin C on these four Faaps suggests that it may be possible to develop other selective inhibitors of eukaryotic acyl-CoA synthetases.
AB - Saccharomyces cerevisiae contains at least five acyl-CoA synthetases (fatty acid activation proteins, or Faaps). Four FAA genes have been recovered to date. Recent genetic studies indicate that Faa1p and Faa4p are involved in the activation of imported fatty acids, while Faa2p activates endogenous pools of fatty acids. We have now purified Faa4p from S. cerevisiae and compared its fatty acid substrate specificity in vitro with the specificities of purified Faa1p, Faa2p, and Faa3p. Among C8-C18 saturated fatty acids, Faa4p and Faa1p both prefer C14:0. Surveys of C14 fatty acids with single cis-double bonds at C2-C12 indicated that Faa4p and Faa1p prefer Z9-tetradecenoic acid, although Faa4p's preference is much greater and also evident in C16 and C18 fatty acids. Faa4p's selectivity for fatty acids with a C9-C10 cis-double bond is a feature it shares with Faa3p and is notable since in yeast Ole1p, a microsomal cis-Δ9 desaturase, accounts for de novo production of monoenoic acyl-CoAs from saturated acyl-CoA substrates. Faa4p has no detectable acyl-CoA synthetase activity when incubated with tetradecenoic acids having a trans-double bond at C2-3, C4-5, C5-6, C6-7, C7- 8, or C9-10. Faa3p can only use E9-tetradecenoic acid as a substrate, while E4-, E6- and E9-tetradecenoic acids can be used by Faa1p and Faa2p. E2- tetradecenoic acid is an Faap inhibitor, with Faa2p exhibiting the greatest sensitivity (IC50 = 2.6 ± 0.2 μM). Triacsin C (1-hydroxy-3- (E,E,E,2',4',7'-undecatrienylidine)-1,2,3-triazene) has trans-double bonds at positions that correspond to those in E2-, E5-, and E7-tetradecenoic acids. This compound is a potent inhibitor of Faa2p (K(i) = 15 ± 1 nM; competitive with fatty acid), less potent against Faa4p (K(i) = 2 μM), and not active against Faa1p or Faa3p (IC50 > 500 μM). Analysis of an n-tetradecanal plus a series of oximes (tridecanal oxime, 1-azadeca-1,3,5-trienol, and 1-azaun- deca-1,3,5-trienol) indicated that the combination of an azenol moiety (R- CH=N-OH) plus adjacent unsaturation are critical for triacsin C's selective inhibition of Faa2p. Triacsin C and oxime derivatives appear to be very useful for defining differences in molecular recognition among S. cerevisiae acyl-CoA synthetases. The >25,000-fold range in the inhibitory effects of triacsin C on these four Faaps suggests that it may be possible to develop other selective inhibitors of eukaryotic acyl-CoA synthetases.
UR - http://www.scopus.com/inward/record.url?scp=0029093993&partnerID=8YFLogxK
U2 - 10.1074/jbc.270.34.20090
DO - 10.1074/jbc.270.34.20090
M3 - Article
C2 - 7650027
AN - SCOPUS:0029093993
VL - 270
SP - 20090
EP - 20097
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 34
ER -