TY - JOUR
T1 - Comparative Analysis of Drug-like EP300/CREBBP Acetyltransferase Inhibitors
AU - Crawford, McKenna C.
AU - Tripu, Deepika R.
AU - Barritt, Samuel A.
AU - Jing, Yihang
AU - Gallimore, Diamond
AU - Kales, Stephen C.
AU - Bhanu, Natarajan V.
AU - Xiong, Ying
AU - Fang, Yuhong
AU - Butler, Kamaria A.T.
AU - LeClair, Christopher A.
AU - Coussens, Nathan P.
AU - Simeonov, Anton
AU - Garcia, Benjamin A.
AU - Dibble, Christian C.
AU - Meier, Jordan L.
N1 - Publisher Copyright:
© 2023 American Chemical Society.
PY - 2023/10/20
Y1 - 2023/10/20
N2 - The human acetyltransferase paralogues EP300 and CREBBP are master regulators of lysine acetylation whose activity has been implicated in various cancers. In the half-decade since the first drug-like inhibitors of these proteins were reported, three unique molecular scaffolds have taken precedent: an indane spiro-oxazolidinedione (A-485), a spiro-hydantoin (iP300w), and an aminopyridine (CPI-1612). Despite increasing use of these molecules to study lysine acetylation, the dearth of data regarding their relative biochemical and biological potencies makes their application as chemical probes a challenge. To address this gap, here we present a comparative study of drug-like EP300/CREBBP acetyltransferase inhibitors. First, we determine the biochemical and biological potencies of A-485, iP300w, and CPI-1612, highlighting the increased potencies of the latter two compounds at physiological acetyl-CoA concentrations. Cellular evaluation shows that inhibition of histone acetylation and cell growth closely aligns with the biochemical potencies of these molecules, consistent with an on-target mechanism. Finally, we demonstrate the utility of comparative pharmacology by using it to investigate the hypothesis that increased CoA synthesis caused by knockout of PANK4 can competitively antagonize the binding of EP300/CREBBP inhibitors and demonstrate proof-of-concept photorelease of a potent inhibitor molecule. Overall, our study demonstrates how knowledge of the relative inhibitor potency can guide the study of EP300/CREBBP-dependent mechanisms and suggests new approaches to target delivery, thus broadening the therapeutic window of these preclinical epigenetic drug candidates.
AB - The human acetyltransferase paralogues EP300 and CREBBP are master regulators of lysine acetylation whose activity has been implicated in various cancers. In the half-decade since the first drug-like inhibitors of these proteins were reported, three unique molecular scaffolds have taken precedent: an indane spiro-oxazolidinedione (A-485), a spiro-hydantoin (iP300w), and an aminopyridine (CPI-1612). Despite increasing use of these molecules to study lysine acetylation, the dearth of data regarding their relative biochemical and biological potencies makes their application as chemical probes a challenge. To address this gap, here we present a comparative study of drug-like EP300/CREBBP acetyltransferase inhibitors. First, we determine the biochemical and biological potencies of A-485, iP300w, and CPI-1612, highlighting the increased potencies of the latter two compounds at physiological acetyl-CoA concentrations. Cellular evaluation shows that inhibition of histone acetylation and cell growth closely aligns with the biochemical potencies of these molecules, consistent with an on-target mechanism. Finally, we demonstrate the utility of comparative pharmacology by using it to investigate the hypothesis that increased CoA synthesis caused by knockout of PANK4 can competitively antagonize the binding of EP300/CREBBP inhibitors and demonstrate proof-of-concept photorelease of a potent inhibitor molecule. Overall, our study demonstrates how knowledge of the relative inhibitor potency can guide the study of EP300/CREBBP-dependent mechanisms and suggests new approaches to target delivery, thus broadening the therapeutic window of these preclinical epigenetic drug candidates.
UR - http://www.scopus.com/inward/record.url?scp=85174640314&partnerID=8YFLogxK
U2 - 10.1021/acschembio.3c00293
DO - 10.1021/acschembio.3c00293
M3 - Article
C2 - 37737090
AN - SCOPUS:85174640314
SN - 1554-8929
VL - 18
SP - 2249
EP - 2258
JO - ACS Chemical Biology
JF - ACS Chemical Biology
IS - 10
ER -