TY - GEN
T1 - Community-centric graph convolutional network for unsupervised community detection
AU - He, Dongxiao
AU - Song, Yue
AU - Jin, Di
AU - Feng, Zhiyong
AU - Zhang, Binbin
AU - Yu, Zhizhi
AU - Zhang, Weixiong
N1 - Funding Information:
This work was supported by the Natural Science Foundation of China (61832014, 61876128, 61772361, U1736103).
Publisher Copyright:
© 2020 Inst. Sci. inf., Univ. Defence in Belgrade. All rights reserved.
PY - 2020
Y1 - 2020
N2 - Community detection, aiming at partitioning a network into multiple substructures, is practically importance. Graph convolutional network (GCN), a new deep-learning technique, has recently been developed for community detection. Markov Random Fields (MRF) has been combined with GCN in the MRFasGCN method to improve accuracy. However, the existing GCN community-finding methods are semi-supervised, even though community finding is essentially an unsupervised learning problem. We developed a new GCN approach for unsupervised community detection under the framework of Autoencoder. We cast MRFasGCN as an encoder and then derived node community membership in the hidden layer of the encoder. We introduced a community-centric dual decoder to reconstruct network structures and node attributes separately in an unsupervised fashion, for faithful community detection in the input space. We designed a scheme of local enhancement to accommodate nodes to have more common neighbors and similar attributes with similar community memberships. Experimental results on real networks showed that our new method outperformed the best existing methods, showing the effectiveness of the novel decoding mechanism for generating links and attributes together over the commonly used methods for reconstructing links alone.
AB - Community detection, aiming at partitioning a network into multiple substructures, is practically importance. Graph convolutional network (GCN), a new deep-learning technique, has recently been developed for community detection. Markov Random Fields (MRF) has been combined with GCN in the MRFasGCN method to improve accuracy. However, the existing GCN community-finding methods are semi-supervised, even though community finding is essentially an unsupervised learning problem. We developed a new GCN approach for unsupervised community detection under the framework of Autoencoder. We cast MRFasGCN as an encoder and then derived node community membership in the hidden layer of the encoder. We introduced a community-centric dual decoder to reconstruct network structures and node attributes separately in an unsupervised fashion, for faithful community detection in the input space. We designed a scheme of local enhancement to accommodate nodes to have more common neighbors and similar attributes with similar community memberships. Experimental results on real networks showed that our new method outperformed the best existing methods, showing the effectiveness of the novel decoding mechanism for generating links and attributes together over the commonly used methods for reconstructing links alone.
UR - http://www.scopus.com/inward/record.url?scp=85097342219&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85097342219
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 3515
EP - 3521
BT - Proceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
A2 - Bessiere, Christian
PB - International Joint Conferences on Artificial Intelligence
T2 - 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
Y2 - 1 January 2021
ER -