TY - JOUR
T1 - Combining D-cycloserine with motor training does not result in improved general motor learning in neurologically intact people or in people with stroke
AU - Cherry, Kendra M.
AU - Lenze, Eric J.
AU - Lang, Catherine E.
PY - 2014/6/15
Y1 - 2014/6/15
N2 - Neurological rehabilitation involving motor training has resulted in clinically meaningful improvements in function but is unable to eliminate many of the impairments associated with neurological injury. Thus there is a growing need for interventions that facilitate motor learning during rehabilitation therapy, to optimize recovery. D-Cycloserine (DCS), a partial N-methyl- D-aspartate (NMDA) receptor agonist that enhances neurotransmission throughout the central nervous system (Ressler KJ, Rothbaum BO, Tannenbaum L, Anderson P, Graap K, Zimand E, Hodges L, Davis M. Arch Gen Psychiatry 61: 1136-1144, 2004), has been shown to facilitate declarative and emotional learning. We therefore tested whether combining DCS with motor training facilitates motor learning after stroke in a series of two experiments. Forty-one healthy adults participated in experiment I, and twenty adults with stroke participated in experiment II of this two-session, double-blind study. Session one consisted of baseline assessment, subject randomization, and oral administration of DCS or placebo (250 mg). Subjects then participated in training on a balancing task, a simulated feeding task, and a cognitive task. Subjects returned 1-3 days later for posttest assessment. We found that all subjects had improved performance from pretest to posttest on the balancing task, the simulated feeding task, and the cognitive task. Subjects who were given DCS before motor training, however, did not show enhanced learning on the balancing task, the simulated feeding task, or the associative recognition task compared with subjects given placebo. Moreover, training on the balancing task did not generalize to a similar, untrained balance task. Our findings suggest that DCS does not enhance motor learning or motor skill generalization in neurologically intact adults or in adults with stroke.
AB - Neurological rehabilitation involving motor training has resulted in clinically meaningful improvements in function but is unable to eliminate many of the impairments associated with neurological injury. Thus there is a growing need for interventions that facilitate motor learning during rehabilitation therapy, to optimize recovery. D-Cycloserine (DCS), a partial N-methyl- D-aspartate (NMDA) receptor agonist that enhances neurotransmission throughout the central nervous system (Ressler KJ, Rothbaum BO, Tannenbaum L, Anderson P, Graap K, Zimand E, Hodges L, Davis M. Arch Gen Psychiatry 61: 1136-1144, 2004), has been shown to facilitate declarative and emotional learning. We therefore tested whether combining DCS with motor training facilitates motor learning after stroke in a series of two experiments. Forty-one healthy adults participated in experiment I, and twenty adults with stroke participated in experiment II of this two-session, double-blind study. Session one consisted of baseline assessment, subject randomization, and oral administration of DCS or placebo (250 mg). Subjects then participated in training on a balancing task, a simulated feeding task, and a cognitive task. Subjects returned 1-3 days later for posttest assessment. We found that all subjects had improved performance from pretest to posttest on the balancing task, the simulated feeding task, and the cognitive task. Subjects who were given DCS before motor training, however, did not show enhanced learning on the balancing task, the simulated feeding task, or the associative recognition task compared with subjects given placebo. Moreover, training on the balancing task did not generalize to a similar, untrained balance task. Our findings suggest that DCS does not enhance motor learning or motor skill generalization in neurologically intact adults or in adults with stroke.
KW - Behavioral training
KW - D-cycloserine
KW - Motor learning
KW - Stroke
UR - http://www.scopus.com/inward/record.url?scp=84902682906&partnerID=8YFLogxK
U2 - 10.1152/jn.00882.2013
DO - 10.1152/jn.00882.2013
M3 - Article
C2 - 24671538
AN - SCOPUS:84902682906
VL - 111
SP - 2516
EP - 2524
JO - Journal of Neurophysiology
JF - Journal of Neurophysiology
SN - 0022-3077
IS - 12
ER -