TY - JOUR
T1 - Combined transductional untargeting/retargeting and transcriptional restriction enhances adenovirus gene targeting and therapy for hepatic colorectal cancer tumors
AU - Li, Hua Jung
AU - Everts, Maaike
AU - Yamamoto, Masato
AU - Curiel, David T.
AU - Herschman, Harvey R.
PY - 2009/1/15
Y1 - 2009/1/15
N2 - Unresectable hepatic colorectal cancer (CRC) metastases are a leading cause of cancer mortality. These tumors and other epithelial tumors often express both cyclooxygenase-2 (COX-2) and carcinoembryonic antigen (CEA). Because adenovirus (Ad) vectors infect the liver and lack tumor tropism, they cannot be used for systemic therapy of hepatic metastases. We used COX-2 transcriptional restriction, in combination with transductional Ad hepatic untargeting and tumor retargeting by a bispecific adapter, sCARhMFE, composed of sCAR [the coxsackie/Ad receptor (CAR) ectodomain] and MFE-23 (a single-chain anti-CEA antibody), to untarget liver after i.v. administration of Ad vectors expressing firefly luciferase and to retarget virus to hepatic colorectal tumor xenografts and non-small cell lung tumor xenografts. To improve both liver untargeting and tumor retargeting, we developed sCARfMFE, a trimerized sCARhMFE adapter. Trimerization greatly improves both untargeting of CAR-dependent Ad infection and CEA-dependent virus retargeting in culture and in vivo. Combining sCARfMFE bispecific adapter transductional liver untargeting and transductional tumor retargeting with COX-2 transcriptional tumor-restricted transgene expression increases systemically administered Ad therapeutic efficacy for hepatic CRC tumors, using herpes virus type 1 thymidine kinase (HSV1-tk) as a therapeutic gene in conjunction with the prodrug ganciclovir (GCV). Both transductional untargeting and COX-2 transcriptional restriction also reduce HSV1-tk/GCV hepatic toxicity. In addition, transductional sCARfMFE untargeting reduces the innate immune response to systemic Ad administration. Combined transductional liver Ad untargeting, transductional tumor retargeting, and transcriptional transgene restriction suggests a means to engineer practical, effective therapeutic agents for hepatic CRC metastases in particular, as well as hepatic metastases of other epithelial cancers.
AB - Unresectable hepatic colorectal cancer (CRC) metastases are a leading cause of cancer mortality. These tumors and other epithelial tumors often express both cyclooxygenase-2 (COX-2) and carcinoembryonic antigen (CEA). Because adenovirus (Ad) vectors infect the liver and lack tumor tropism, they cannot be used for systemic therapy of hepatic metastases. We used COX-2 transcriptional restriction, in combination with transductional Ad hepatic untargeting and tumor retargeting by a bispecific adapter, sCARhMFE, composed of sCAR [the coxsackie/Ad receptor (CAR) ectodomain] and MFE-23 (a single-chain anti-CEA antibody), to untarget liver after i.v. administration of Ad vectors expressing firefly luciferase and to retarget virus to hepatic colorectal tumor xenografts and non-small cell lung tumor xenografts. To improve both liver untargeting and tumor retargeting, we developed sCARfMFE, a trimerized sCARhMFE adapter. Trimerization greatly improves both untargeting of CAR-dependent Ad infection and CEA-dependent virus retargeting in culture and in vivo. Combining sCARfMFE bispecific adapter transductional liver untargeting and transductional tumor retargeting with COX-2 transcriptional tumor-restricted transgene expression increases systemically administered Ad therapeutic efficacy for hepatic CRC tumors, using herpes virus type 1 thymidine kinase (HSV1-tk) as a therapeutic gene in conjunction with the prodrug ganciclovir (GCV). Both transductional untargeting and COX-2 transcriptional restriction also reduce HSV1-tk/GCV hepatic toxicity. In addition, transductional sCARfMFE untargeting reduces the innate immune response to systemic Ad administration. Combined transductional liver Ad untargeting, transductional tumor retargeting, and transcriptional transgene restriction suggests a means to engineer practical, effective therapeutic agents for hepatic CRC metastases in particular, as well as hepatic metastases of other epithelial cancers.
UR - http://www.scopus.com/inward/record.url?scp=58349088725&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-08-3209
DO - 10.1158/0008-5472.CAN-08-3209
M3 - Article
C2 - 19147569
AN - SCOPUS:58349088725
SN - 0008-5472
VL - 69
SP - 554
EP - 564
JO - Cancer research
JF - Cancer research
IS - 2
ER -