Cutaneous squamous cell carcinoma (cSCC) has among the highest mutation burdens of all cancers, reflecting its pathogenic association with the mutagenic effects of UV light exposure. Although mutations in cancer-relevant genes such as TP53 and NOTCH1 are common in cSCC, they are also tolerated in normal skin and suggest that other events are required for transformation; it is not yet clear whether epigenetic regulators cooperate in the pathogenesis of cSCC. KDM6A encodes a histone H3K27me2/me3 demethylase that is frequently mutated in cSCC and other cancers. Previous sequencing studies indicate that roughly 7% of cSCC samples harbor KDM6A mutations, including frequent truncating mutations, suggesting a role for this gene as a tumor suppressor in cSCC. Mice with epidermal deficiency of both Kdm6a and Trp53 exhibited 100% penetrant, spontaneous cSCC development within a year, and exome sequencing of resulting tumors reveals recurrent mutations in Ncstn and Vcan. Four of 16 tumors exhibited deletions in large portions of chromosome 1 involving Ncstn, whereas another 25% of tumors harbored deletions in chromosome 19 involving Pten, implicating the loss of other tumor suppressors as cooperating events for combined KDM6A- and TRP53-dependent tumorigenesis. This study suggests that KDM6A acts as an important tumor suppressor for cSCC pathogenesis.

Original languageEnglish
Pages (from-to)232-241.e6
JournalJournal of Investigative Dermatology
Issue number2
StatePublished - Feb 2023


Dive into the research topics of 'Combined Kdm6a and Trp53 Deficiency Drives the Development of Squamous Cell Skin Cancer in Mice'. Together they form a unique fingerprint.

Cite this