Combined burden and functional impact tests for cancer driver discovery using DriverPower

PCAWG Drivers and Functional Interpretation Working Group, PCAWG Consortium, Shimin Shuai, Federico Abascal, Samirkumar B. Amin, Gary D. Bader, Pratiti Bandopadhayay, Jonathan Barenboim, Rameen Beroukhim, Johanna Bertl, Keith A. Boroevich, Søren Brunak, Peter J. Campbell, Joana Carlevaro-Fita, Dimple Chakravarty, Calvin Wing Yiu Chan, Ken Chen, Jung Kyoon Choi, Jordi Deu-Pons, Priyanka DhingraKlev Diamanti, Lars Feuerbach, J. Lynn Fink, Nuno A. Fonseca, Joan Frigola, Carlo Gambacorti-Passerini, Dale W. Garsed, Mark Gerstein, Gad Getz, Qianyun Guo, Ivo G. Gut, David Haan, Mark P. Hamilton, Nicholas J. Haradhvala, Arif O. Harmanci, Mohamed Helmy, Carl Herrmann, Julian M. Hess, Asger Hobolth, Ermin Hodzic, Chen Hong, Henrik Hornshøj, Keren Isaev, Jose M.G. Izarzugaza, Rory Johnson, Todd A. Johnson, Malene Juul, Randi Istrup Juul, Andre Kahles, Abdullah Kahraman, Manolis Kellis, Ekta Khurana, Jaegil Kim, Jong K. Kim, Youngwook Kim, Jan Komorowski, Jan O. Korbel, Sushant Kumar, Andrés Lanzós, Erik Larsson, Michael S. Lawrence, Donghoon Lee, Kjong Van Lehmann, Shantao Li, Xiaotong Li, Ziao Lin, Eric Minwei Liu, Lucas Lochovsky, Shaoke Lou, Tobias Madsen, Kathleen Marchal, Iñigo Martincorena, Alexander Martinez-Fundichely, Yosef E. Maruvka, Patrick D. McGillivray, William Meyerson, Ferran Muiños, Loris Mularoni, Hidewaki Nakagawa, Morten Muhlig Nielsen, Marta Paczkowska, Keunchil Park, Kiejung Park, Jakob Skou Pedersen, Tirso Pons, Sergio Pulido-Tamayo, Benjamin J. Raphael, Jüri Reimand, Iker Reyes-Salazar, Matthew A. Reyna, Esther Rheinbay, Mark A. Rubin, Carlota Rubio-Perez, S. Cenk Sahinalp, Gordon Saksena, Leonidas Salichos, Chris Sander, Steven E. Schumacher, Mark Shackleton, Ofer Shapira, Ciyue Shen, Raunak Shrestha, Shimin Shuai, Nikos Sidiropoulos, Lina Sieverling, Nasa Sinnott-Armstrong, Lincoln D. Stein, Joshua M. Stuart, David Tamborero, Grace Tiao, Tatsuhiko Tsunoda, Husen M. Umer, Liis Uusküla-Reimand, Alfonso Valencia, Miguel Vazquez, Lieven P.C. Verbeke, Claes Wadelius, Lina Wadi, Jiayin Wang, Jonathan Warrell, Sebastian M. Waszak, Joachim Weischenfeldt, David A. Wheeler, Guanming Wu, Jun Yu, Jing Zhang, Xuanping Zhang, Yan Zhang, Zhongming Zhao, Lihua Zou, Christian von Mering, Steven Gallinger, Lauri A. Aaltonen, Federico Abascal, Adam Abeshouse, Hiroyuki Aburatani, David J. Adams, Nishant Agrawal, Keun Soo Ahn, Sung Min Ahn, Hiroshi Aikata, Rehan Akbani, Kadir C. Akdemir, Hikmat Al-Ahmadie, Sultan T. Al-Sedairy, Fatima Al-Shahrour, Malik Alawi, Monique Albert, Kenneth Aldape, Ludmil B. Alexandrov, Adrian Ally, Kathryn Alsop, Eva G. Alvarez, Fernanda Amary, Samirkumar B. Amin, Brice Aminou, Ole Ammerpohl, Matthew J. Anderson, Yeng Ang, Davide Antonello, Pavana Anur, Samuel Aparicio, Elizabeth L. Appelbaum, Yasuhito Arai, Axel Aretz, Koji Arihiro, Shun ichi Ariizumi, Joshua Armenia, Laurent Arnould, Sylvia Asa, Yassen Assenov, Gurnit Atwal, Sietse Aukema, J. Todd Auman, Miriam R.R. Aure, Philip Awadalla, Marta Aymerich, Adrian Baez-Ortega, Matthew H. Bailey, Peter J. Bailey, Miruna Balasundaram, Saianand Balu, Pratiti Bandopadhayay, Rosamonde E. Banks, Stefano Barbi, Andrew P. Barbour, Jonathan Barenboim, Jill Barnholtz-Sloan, Hugh Barr, Elisabet Barrera, John Bartlett, Javier Bartolome, Claudio Bassi, Li Ding, Lucinda A. Fulton, Robert S. Fulton, Ramaswamy Govindan, Reyka Jayasinghe, Tim Ley, Christopher A. Miller, David Mutch, Michael C. Wendl

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

The discovery of driver mutations is one of the key motivations for cancer genome sequencing. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumour types, we describe DriverPower, a software package that uses mutational burden and functional impact evidence to identify driver mutations in coding and non-coding sites within cancer whole genomes. Using a total of 1373 genomic features derived from public sources, DriverPower’s background mutation model explains up to 93% of the regional variance in the mutation rate across multiple tumour types. By incorporating functional impact scores, we are able to further increase the accuracy of driver discovery. Testing across a collection of 2583 cancer genomes from the PCAWG project, DriverPower identifies 217 coding and 95 non-coding driver candidates. Comparing to six published methods used by the PCAWG Drivers and Functional Interpretation Working Group, DriverPower has the highest F1 score for both coding and non-coding driver discovery. This demonstrates that DriverPower is an effective framework for computational driver discovery.

Original languageEnglish
Article number734
JournalNature communications
Volume11
Issue number1
DOIs
StatePublished - Dec 1 2020

Fingerprint

Dive into the research topics of 'Combined burden and functional impact tests for cancer driver discovery using DriverPower'. Together they form a unique fingerprint.

Cite this