A monospecific antibody to rat uterine collagenase has been produced and employed to study the cell of origin and the time course of production of this enzyme in the involuting rat uterus. The specificity of the anti‐collagenase antibody was confirmed by immunoprecipitation, Western analysis, and by its ability to inhibit the activity of collagenase. Parallel measurements of functional enzyme, both latent and active, bound to tissue collagen were also made in nonpregnant, gravid, and postpartum rat uteri. Immunohistochemical staining of collagenase in sections of rat uterus showed the enzyme to be present in the perinuclear region of the smooth muscle cells only of the involuting myometrium. No detectable collagenase was present in the prepartum or nonpregnant uterus. Identity of the smooth muscle cells was confirmed using an anti‐smooth muscle actin antibody. In addition, the cultured uterine cells from which the immunizing antigen was obtained were also identified as smooth muscle cells. Specificity of the tissue staining was confirmed by the ability of pure rat uterine collagenase to block the reaction of the antibody with the tissue. These observations indicate that smooth muscle cells are capable of producing collagenase and are consistent with the hypothesis that this enzyme presides over the massive collagen degradation seen in postpartum uterine involution. Furthermore, measurement of collagenase bound to uterine collagen revealed that collagenase activity could be detected only at the time that the cells could be seen to be producing the enzyme by immunolocalization. These findings support the concept that collagenase is produced only as needed and not stored, either intra‐ or extracellularly.

Original languageEnglish
Pages (from-to)111-123
Number of pages13
JournalJournal of Cellular Physiology
Issue number1
StatePublished - Oct 1986


Dive into the research topics of 'Collagenase production by smooth muscle: Correlation of immunoreactive with functional enzyme in the myometrium'. Together they form a unique fingerprint.

Cite this