TY - JOUR
T1 - Collagen gene expression during development of avian synovial joints
T2 - Transient expression of types II and XI collagen genes in the joint capsule
AU - Nalin, Andrew M.
AU - Greenlee, Theodore K.
AU - Sandell, Linda J.
PY - 1995/7
Y1 - 1995/7
N2 - The developmental sequence of the embryonic joint has been well studied morphologically. There are, however, no definitive studies of cell function during joint development. In order to begin to understand the differentiation events that contribute to joint formation, we examined the expression of collagen mRNAs encoding types I, IIA, IIB, and XI. In situ hybridization was performed on chicken embryo hind limb buds and digits from day 7 to day 18 (Hamburger and Hamilton stages 31–44). In the day 7 (stage 31) limb bud, there was a condensation of mesenchyme forming the primitive tarsal and metatarsal bones that showed abundant expression of type IIA procollagen message, but no type IIB or type α1(XI) message. By day 8 (stage 33), co‐expression of types IIA, and type XI procollagen mRNAs was observed in the condensations, with expression of IIB restricted to early chondrocytes with metachromatically staining matrix. At this stage, DNA fragmentation characteristic of apoptosis was observed in cells near the midline of the interzone region between the developing anlagen, and in areas between and around the individual digits of the paddle. The presumptive apoptotic cells were more numerous at day 9 (stage 35), and were not found in the developing joint at subsequent time points, including the initiation of spatial cavitation of the joint. From days 11–18, type IIA procollagen mRNA was expressed in flattened cells at the surface of the anlagen, and in the perichondrium and in the developing joint capsule; type IIB mRNA message was found only in chondrocytes. Type XI mRNA was expressed by all type II‐expressing cells. Alpha 1(I) mRNA was expressed early by cells of th8e interzone and capsule, but as cavitation progressed, the type I expressing cells of the interzone merged with the superficial layer of the articular surface. Thus, at the time of joint cavitation, there was a distinct pattern of expression of procollagen messages at the articular surface, with type I being outermost, followed by morphologically similar cells expressing type IIA, then chondrocytes expressing type IIB. The progenitor cells expressing type IIA message define a new population of cells. These cell populations contribute to the molecular heterogeneity of the articular cartilage, and these same populations likely exist in the developing joints of other species. The transient transcription of type II and type XI collagen genes, characteristic of chondrocytes, by cells in the joint capsule demonstrates that these cells may have chondrogenic potential. ©1995 Wiley‐Liss, Inc.
AB - The developmental sequence of the embryonic joint has been well studied morphologically. There are, however, no definitive studies of cell function during joint development. In order to begin to understand the differentiation events that contribute to joint formation, we examined the expression of collagen mRNAs encoding types I, IIA, IIB, and XI. In situ hybridization was performed on chicken embryo hind limb buds and digits from day 7 to day 18 (Hamburger and Hamilton stages 31–44). In the day 7 (stage 31) limb bud, there was a condensation of mesenchyme forming the primitive tarsal and metatarsal bones that showed abundant expression of type IIA procollagen message, but no type IIB or type α1(XI) message. By day 8 (stage 33), co‐expression of types IIA, and type XI procollagen mRNAs was observed in the condensations, with expression of IIB restricted to early chondrocytes with metachromatically staining matrix. At this stage, DNA fragmentation characteristic of apoptosis was observed in cells near the midline of the interzone region between the developing anlagen, and in areas between and around the individual digits of the paddle. The presumptive apoptotic cells were more numerous at day 9 (stage 35), and were not found in the developing joint at subsequent time points, including the initiation of spatial cavitation of the joint. From days 11–18, type IIA procollagen mRNA was expressed in flattened cells at the surface of the anlagen, and in the perichondrium and in the developing joint capsule; type IIB mRNA message was found only in chondrocytes. Type XI mRNA was expressed by all type II‐expressing cells. Alpha 1(I) mRNA was expressed early by cells of th8e interzone and capsule, but as cavitation progressed, the type I expressing cells of the interzone merged with the superficial layer of the articular surface. Thus, at the time of joint cavitation, there was a distinct pattern of expression of procollagen messages at the articular surface, with type I being outermost, followed by morphologically similar cells expressing type IIA, then chondrocytes expressing type IIB. The progenitor cells expressing type IIA message define a new population of cells. These cell populations contribute to the molecular heterogeneity of the articular cartilage, and these same populations likely exist in the developing joints of other species. The transient transcription of type II and type XI collagen genes, characteristic of chondrocytes, by cells in the joint capsule demonstrates that these cells may have chondrogenic potential. ©1995 Wiley‐Liss, Inc.
KW - Alternative splicing
KW - Apoptosis
KW - Chondrogenesis
KW - Collagen
KW - Joint development
UR - http://www.scopus.com/inward/record.url?scp=0029010445&partnerID=8YFLogxK
U2 - 10.1002/aja.1002030307
DO - 10.1002/aja.1002030307
M3 - Article
C2 - 8589432
AN - SCOPUS:0029010445
SN - 1058-8388
VL - 203
SP - 352
EP - 362
JO - Developmental Dynamics
JF - Developmental Dynamics
IS - 3
ER -