TY - JOUR
T1 - Clonal analysis of in vivo activated CD8+ cytotoxic T lymphocytes from a melanoma patient responsive to active specific immunotherapy
AU - Kan-Mitchell, June
AU - Huang, Xiu Qing
AU - Steinman, Lawrence
AU - Oksenberg, Jorge R.
AU - Harel, William
AU - Parker, John W.
AU - Goedegebuure, Peter S.
AU - Darrow, Timothy L.
AU - Mitchell, Malcolm S.
PY - 1993/1
Y1 - 1993/1
N2 - To study in vivo activated cytolytic T cells, CD8+ T cells clones were isolated from a melanoma patient (HLA A2, A11) treated with active specific immunotherapy for 5 years. CD8+ T lymphocytes, purified by fluorescence-activated cell sorting, were cloned directly from the peripheral blood without antigen-presenting cells in the presence of irradiated autologous melanoma cells and recombinant interleukin-2 (IL-2) and IL-4. These conditions were inhibitory to de novo in vitro immunization. Of the 28 cytolytic CD8+ T cell clones, 21 lysed the autologous melanoma cell line (M7) but not the autologous lymphoblastoid cell line (LCL-7) nor the two melanoma cell lines, M1 (HLA A28) and M2 (HLA A28, A31), used to immunize the patient. The remaining 7 clones were also melanoma-specific, although their reactivities were broader, lysing several melanoma cell lines but not HLA-matched lymphoblastoid cells. Eight clones from the first group, ostensibly self-MHC-restricted, were expanded for further analysis. All expressed cluster determinants characteristic of mature, activated T cells, but not those of thymocytes, naive T cells, B cells or natural killer (NK) cells. They also expressed CD13, a myeloid marker. Of the 8 clones, 3 expressed both CD4 and CD8, but dual expression was not correlated with specificity of lysis. Two CD8+ and 2 CD4+ CD8+ clones were specific for the autologous melanoma cells, the other 4 were also reactive against other HLA-A2-positive melanomas. Cytotoxicity for both singly and doubly positive clones was restricted by HLA class I but not class II antigens. Analysis of the RNA expression of the T cell receptor (TCR) Vα and Vβ gene segments revealed heterogeneous usage by the A2-restricted clones and, perhaps, also by the broadly melanoma-specific clones. Apparent TCR-restricted usage was noted for the self-MHC-restricted clones; 2 of the 4 expressed the Vα17/Vβ7 dimer. Since the T cell clones were derived from separate precursors of circulating cytotoxic T lymphocytes (CTL), the Vα17/Vβ7 TCR was well represented in the peripheral blood lymphocytes of this patient. In summary, we show that melanoma cells presented their own antigens to stimulate the proliferation of melanoma-reactive CD8+ CTL. CTL with a range of melanoma specificities and different TCR αβ dimers were encountered in this patient, perhaps as a result of hyperimmunization. Restricted TCR gene usage was noted only for classical self-MHC-restricted CD8+ T cell clones, although lysis of the autologous melanoma cells was effected by a variety of TCR structures. Molecular definition of the TCR repertoire of well-characterized T cell clones in this and other patients should provide new insight into the human antitumor immune response.
AB - To study in vivo activated cytolytic T cells, CD8+ T cells clones were isolated from a melanoma patient (HLA A2, A11) treated with active specific immunotherapy for 5 years. CD8+ T lymphocytes, purified by fluorescence-activated cell sorting, were cloned directly from the peripheral blood without antigen-presenting cells in the presence of irradiated autologous melanoma cells and recombinant interleukin-2 (IL-2) and IL-4. These conditions were inhibitory to de novo in vitro immunization. Of the 28 cytolytic CD8+ T cell clones, 21 lysed the autologous melanoma cell line (M7) but not the autologous lymphoblastoid cell line (LCL-7) nor the two melanoma cell lines, M1 (HLA A28) and M2 (HLA A28, A31), used to immunize the patient. The remaining 7 clones were also melanoma-specific, although their reactivities were broader, lysing several melanoma cell lines but not HLA-matched lymphoblastoid cells. Eight clones from the first group, ostensibly self-MHC-restricted, were expanded for further analysis. All expressed cluster determinants characteristic of mature, activated T cells, but not those of thymocytes, naive T cells, B cells or natural killer (NK) cells. They also expressed CD13, a myeloid marker. Of the 8 clones, 3 expressed both CD4 and CD8, but dual expression was not correlated with specificity of lysis. Two CD8+ and 2 CD4+ CD8+ clones were specific for the autologous melanoma cells, the other 4 were also reactive against other HLA-A2-positive melanomas. Cytotoxicity for both singly and doubly positive clones was restricted by HLA class I but not class II antigens. Analysis of the RNA expression of the T cell receptor (TCR) Vα and Vβ gene segments revealed heterogeneous usage by the A2-restricted clones and, perhaps, also by the broadly melanoma-specific clones. Apparent TCR-restricted usage was noted for the self-MHC-restricted clones; 2 of the 4 expressed the Vα17/Vβ7 dimer. Since the T cell clones were derived from separate precursors of circulating cytotoxic T lymphocytes (CTL), the Vα17/Vβ7 TCR was well represented in the peripheral blood lymphocytes of this patient. In summary, we show that melanoma cells presented their own antigens to stimulate the proliferation of melanoma-reactive CD8+ CTL. CTL with a range of melanoma specificities and different TCR αβ dimers were encountered in this patient, perhaps as a result of hyperimmunization. Restricted TCR gene usage was noted only for classical self-MHC-restricted CD8+ T cell clones, although lysis of the autologous melanoma cells was effected by a variety of TCR structures. Molecular definition of the TCR repertoire of well-characterized T cell clones in this and other patients should provide new insight into the human antitumor immune response.
KW - Active specific immunotherapy
KW - Cytotoxic T lymphocytes
KW - Human melanoma
KW - T cell receptor
UR - http://www.scopus.com/inward/record.url?scp=0027256644&partnerID=8YFLogxK
U2 - 10.1007/BF01516937
DO - 10.1007/BF01516937
M3 - Article
C2 - 8513449
AN - SCOPUS:0027256644
SN - 0340-7004
VL - 37
SP - 15
EP - 25
JO - Cancer Immunology Immunotherapy
JF - Cancer Immunology Immunotherapy
IS - 1
ER -