TY - JOUR
T1 - CLN8 is an endoplasmic reticulum cargo receptor that regulates lysosome biogenesis
AU - di Ronza, Alberto
AU - Bajaj, Lakshya
AU - Sharma, Jaiprakash
AU - Sanagasetti, Deepthi
AU - Lotfi, Parisa
AU - Adamski, Carolyn Joy
AU - Collette, John
AU - Palmieri, Michela
AU - Amawi, Abdallah
AU - Popp, Lauren
AU - Chang, Kevin Tommy
AU - Meschini, Maria Chiara
AU - Leung, Hon Chiu Eastwood
AU - Segatori, Laura
AU - Simonati, Alessandro
AU - Sifers, Richard Norman
AU - Santorelli, Filippo Maria
AU - Sardiello, Marco
N1 - Publisher Copyright:
© 2018, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2018/12/1
Y1 - 2018/12/1
N2 - Organelle biogenesis requires proper transport of proteins from their site of synthesis to their target subcellular compartment 1–3 . Lysosomal enzymes are synthesized in the endoplasmic reticulum (ER) and traffic through the Golgi complex before being transferred to the endolysosomal system 4–6 , but how they are transferred from the ER to the Golgi is unknown. Here, we show that ER-to-Golgi transfer of lysosomal enzymes requires CLN8, an ER-associated membrane protein whose loss of function leads to the lysosomal storage disorder, neuronal ceroid lipofuscinosis 8 (a type of Batten disease) 7 . ER-to-Golgi trafficking of CLN8 requires interaction with the COPII and COPI machineries via specific export and retrieval signals localized in the cytosolic carboxy terminus of CLN8. CLN8 deficiency leads to depletion of soluble enzymes in the lysosome, thus impairing lysosome biogenesis. Binding to lysosomal enzymes requires the second luminal loop of CLN8 and is abolished by some disease-causing mutations within this region. Our data establish an unanticipated example of an ER receptor serving the biogenesis of an organelle and indicate that impaired transport of lysosomal enzymes underlies Batten disease caused by mutations in CLN8.
AB - Organelle biogenesis requires proper transport of proteins from their site of synthesis to their target subcellular compartment 1–3 . Lysosomal enzymes are synthesized in the endoplasmic reticulum (ER) and traffic through the Golgi complex before being transferred to the endolysosomal system 4–6 , but how they are transferred from the ER to the Golgi is unknown. Here, we show that ER-to-Golgi transfer of lysosomal enzymes requires CLN8, an ER-associated membrane protein whose loss of function leads to the lysosomal storage disorder, neuronal ceroid lipofuscinosis 8 (a type of Batten disease) 7 . ER-to-Golgi trafficking of CLN8 requires interaction with the COPII and COPI machineries via specific export and retrieval signals localized in the cytosolic carboxy terminus of CLN8. CLN8 deficiency leads to depletion of soluble enzymes in the lysosome, thus impairing lysosome biogenesis. Binding to lysosomal enzymes requires the second luminal loop of CLN8 and is abolished by some disease-causing mutations within this region. Our data establish an unanticipated example of an ER receptor serving the biogenesis of an organelle and indicate that impaired transport of lysosomal enzymes underlies Batten disease caused by mutations in CLN8.
UR - http://www.scopus.com/inward/record.url?scp=85055976751&partnerID=8YFLogxK
U2 - 10.1038/s41556-018-0228-7
DO - 10.1038/s41556-018-0228-7
M3 - Letter
C2 - 30397314
AN - SCOPUS:85055976751
SN - 1465-7392
VL - 20
SP - 1370
EP - 1377
JO - Nature Cell Biology
JF - Nature Cell Biology
IS - 12
ER -