TY - JOUR
T1 - Clinical prediction for surgical versus nonsurgical interventions in patients with vertebral osteomyelitis and discitis
AU - Lee, Jennifer
AU - Ruiz-Cardozo, Miguel A.
AU - Patel, Rujvee P.
AU - Javeed, Saad
AU - Lavadi, Raj Swaroop
AU - Newsom-Stewart, Catherine
AU - Alyakin, Anton
AU - Molina, Camilo
AU - Agarwal, Nitin
AU - Ray, Wilson
AU - Santacatterina, Michele
AU - Pennicooke, Brenton H.
N1 - Publisher Copyright:
© Journal of Spine Surgery. All rights reserved.
PY - 2024/6
Y1 - 2024/6
N2 - Background: Vertebral osteomyelitis and discitis (VOD), an infection of intervertebral discs, often requires spine surgical intervention and timely management to prevent adverse outcomes. Our study aims to develop a machine learning (ML) model to predict the indication for surgical intervention (during the same hospital stay) versus nonsurgical management in patients with VOD. Methods: This retrospective study included adult patients (≥18 years) with VOD (ICD-10 diagnosis codes M46.2,3,4,5) treated at a single institution between 01/01/2015 and 12/31/2019. The primary outcome studied was surgery. Candidate predictors were age, sex, race, Elixhauser comorbidity index, first-recorded lab values, first-recorded vital signs, and admit diagnosis. After splitting the dataset, XGBoost, logistic regression, and K-neighbor classifier algorithms were trained and tested for model development. Results: A total of 1,111 patients were included in this study, among which 30% (n=339) of patients underwent surgical intervention. Age and sex did not significantly differ between the two groups; however, race did significantly differ (P<0.0001), with the surgical group having a higher percentage of white patients. The top ten model features for the best-performing model (XGBoost) were as follows (in descending order of importance): admit diagnosis of fever, negative culture, Staphylococcus aureus culture, partial pressure of arterial oxygen to fractional inspired oxygen ratio (PaO2:FiO2), admit diagnosis of intraspinal abscess and granuloma, admit diagnosis of sepsis, race, troponin I, acid-fast bacillus culture, and alveolar-arterial gradient (A-a gradient). XGBoost model metrics were as follows: accuracy =0.7534, sensitivity =0.7436, specificity =0.7586, and area under the curve (AUC) =0.8210. Conclusions: The XGBoost model reliably predicts the indication for surgical intervention based on several readily available patient demographic information and clinical features. The interpretability of a supervised ML model provides robust insight into patient outcomes. Furthermore, it paves the way for the development of an efficient hospital resource allocation instrument, designed to guide clinical suggestions.
AB - Background: Vertebral osteomyelitis and discitis (VOD), an infection of intervertebral discs, often requires spine surgical intervention and timely management to prevent adverse outcomes. Our study aims to develop a machine learning (ML) model to predict the indication for surgical intervention (during the same hospital stay) versus nonsurgical management in patients with VOD. Methods: This retrospective study included adult patients (≥18 years) with VOD (ICD-10 diagnosis codes M46.2,3,4,5) treated at a single institution between 01/01/2015 and 12/31/2019. The primary outcome studied was surgery. Candidate predictors were age, sex, race, Elixhauser comorbidity index, first-recorded lab values, first-recorded vital signs, and admit diagnosis. After splitting the dataset, XGBoost, logistic regression, and K-neighbor classifier algorithms were trained and tested for model development. Results: A total of 1,111 patients were included in this study, among which 30% (n=339) of patients underwent surgical intervention. Age and sex did not significantly differ between the two groups; however, race did significantly differ (P<0.0001), with the surgical group having a higher percentage of white patients. The top ten model features for the best-performing model (XGBoost) were as follows (in descending order of importance): admit diagnosis of fever, negative culture, Staphylococcus aureus culture, partial pressure of arterial oxygen to fractional inspired oxygen ratio (PaO2:FiO2), admit diagnosis of intraspinal abscess and granuloma, admit diagnosis of sepsis, race, troponin I, acid-fast bacillus culture, and alveolar-arterial gradient (A-a gradient). XGBoost model metrics were as follows: accuracy =0.7534, sensitivity =0.7436, specificity =0.7586, and area under the curve (AUC) =0.8210. Conclusions: The XGBoost model reliably predicts the indication for surgical intervention based on several readily available patient demographic information and clinical features. The interpretability of a supervised ML model provides robust insight into patient outcomes. Furthermore, it paves the way for the development of an efficient hospital resource allocation instrument, designed to guide clinical suggestions.
KW - Clinical prediction
KW - machine learning (ML)
KW - spine surgery
KW - surgical intervention
KW - vertebral osteomyelitis discitis
UR - http://www.scopus.com/inward/record.url?scp=85197442459&partnerID=8YFLogxK
U2 - 10.21037/jss-23-111
DO - 10.21037/jss-23-111
M3 - Article
C2 - 38974494
AN - SCOPUS:85197442459
SN - 2414-469X
VL - 10
SP - 204
EP - 213
JO - Journal of Spine Surgery
JF - Journal of Spine Surgery
IS - 2
ER -