TY - JOUR
T1 - Clinical evaluation of soft tissue organ boundary visualization on cone-beam computed tomographic imaging
AU - Weiss, Elisabeth
AU - Wu, Jian
AU - Sleeman, William
AU - Bryant, Joshua
AU - Mitra, Priya
AU - Myers, Michael
AU - Ivanova, Tatjana
AU - Mukhopadhyay, Nitai
AU - Ramakrishnan, Viswanathan
AU - Murphy, Martin
AU - Williamson, Jeffrey
PY - 2010
Y1 - 2010
N2 - Purpose: Cone-beam computed tomographic images (CBCTs) are increasingly used for setup correction, soft tissue targeting, and image-guided adaptive radiotherapy. However, CBCT image quality is limited by low contrast and imaging artifacts. This analysis investigates the detectability of soft tissue boundaries in CBCT by performing a multiple-observer segmentation study. Methods and Materials: In four prostate cancer patients prostate, bladder and rectum were repeatedly delineated by five observers on CBCTs and fan-beam CTs (FBCTs). A volumetric analysis of contouring variations was performed by calculating coefficients of variation (COV: standard deviation/average volume). The topographical distribution of contouring variations was analyzed using an average surface mesh-based method. Results: Observer- and patient-averaged COVs for FBCT/CBCT were 0.09/0.19 for prostate, 0.05/0.08 for bladder, and 0.09/0.08 for rectum. Contouring variations on FBCT were significantly smaller than on CBCT for prostate (p < 0.03) and bladder (p < 0.04), but not for rectum (p < 0.37; intermodality differences). Intraobserver variations from repeated contouring of the same image set were not significant for either FBCT or CBCT (p < 0.05). Average standard deviations of individual observers' contour differences from average surface meshes on FBCT vs. CBCT were 1.5 vs. 2.1 mm for prostate, 0.7 vs. 1.4 mm for bladder, and 1.3 vs. 1.5 mm for rectum. The topographical distribution of contouring variations was similar for FBCT and CBCT. Conclusion: Contouring variations were larger on CBCT than FBCT, except for rectum. Given the well-documented uncertainty in soft tissue contouring in the pelvis, improvement of CBCT image quality and establishment of well-defined soft tissue identification rules are desirable for image-guided radiotherapy.
AB - Purpose: Cone-beam computed tomographic images (CBCTs) are increasingly used for setup correction, soft tissue targeting, and image-guided adaptive radiotherapy. However, CBCT image quality is limited by low contrast and imaging artifacts. This analysis investigates the detectability of soft tissue boundaries in CBCT by performing a multiple-observer segmentation study. Methods and Materials: In four prostate cancer patients prostate, bladder and rectum were repeatedly delineated by five observers on CBCTs and fan-beam CTs (FBCTs). A volumetric analysis of contouring variations was performed by calculating coefficients of variation (COV: standard deviation/average volume). The topographical distribution of contouring variations was analyzed using an average surface mesh-based method. Results: Observer- and patient-averaged COVs for FBCT/CBCT were 0.09/0.19 for prostate, 0.05/0.08 for bladder, and 0.09/0.08 for rectum. Contouring variations on FBCT were significantly smaller than on CBCT for prostate (p < 0.03) and bladder (p < 0.04), but not for rectum (p < 0.37; intermodality differences). Intraobserver variations from repeated contouring of the same image set were not significant for either FBCT or CBCT (p < 0.05). Average standard deviations of individual observers' contour differences from average surface meshes on FBCT vs. CBCT were 1.5 vs. 2.1 mm for prostate, 0.7 vs. 1.4 mm for bladder, and 1.3 vs. 1.5 mm for rectum. The topographical distribution of contouring variations was similar for FBCT and CBCT. Conclusion: Contouring variations were larger on CBCT than FBCT, except for rectum. Given the well-documented uncertainty in soft tissue contouring in the pelvis, improvement of CBCT image quality and establishment of well-defined soft tissue identification rules are desirable for image-guided radiotherapy.
KW - Cone-beam CT
KW - Image quality
KW - Image-guided adaptive radiotherapy
KW - Prostate cancer
KW - Segmentation
UR - http://www.scopus.com/inward/record.url?scp=77957203698&partnerID=8YFLogxK
U2 - 10.1016/j.ijrobp.2010.02.007
DO - 10.1016/j.ijrobp.2010.02.007
M3 - Article
C2 - 20542644
AN - SCOPUS:77957203698
SN - 0360-3016
VL - 78
SP - 929
EP - 936
JO - International Journal of Radiation Oncology Biology Physics
JF - International Journal of Radiation Oncology Biology Physics
IS - 3
ER -