Cleavage-furrow formation without F-actin in Chlamydomonas

Masayuki Onishi, James G. Umen, Frederick R. Cross, John R. Pringle

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

It is widely believed that cleavage-furrow formation during cytokinesis is driven by the contraction of a ring containing F-actin and type-II myosin. However, even in cells that have such rings, they are not always essential for furrow formation. Moreover, many taxonomically diverse eukaryotic cells divide by furrowing but have no type-II myosin, making it unlikely that an actomyosin ring drives furrowing. To explore this issue further, we have used one such organism, the green alga Chlamydomonas reinhardtii. We found that although F-actin is associated with the furrow region, none of the three myosins (of types VIII and XI) is localized there. Moreover, when F-actin was eliminated through a combination of a mutation and a drug, furrows still formed and the cells divided, although somewhat less efficiently than normal. Unexpectedly, division of the large Chlamydomonas chloroplast was delayed in the cells lacking F-actin; as this organelle lies directly in the path of the cleavage furrow, this delay may explain, at least in part, the delay in cytokinesis itself. Earlier studies had shown an association of microtubules with the cleavage furrow, and we used a fluorescently tagged EB1 protein to show that microtubules are still associated with the furrows in the absence of F-actin, consistent with the possibility that the microtubules are important for furrow formation. We suggest that the actomyosin ring evolved as one way to improve the efficiency of a core process for furrow formation that was already present in ancestral eukaryotes.

Original languageEnglish
Pages (from-to)18511-18520
Number of pages10
JournalProceedings of the National Academy of Sciences of the United States of America
Volume117
Issue number31
DOIs
StatePublished - Aug 4 2020

Keywords

  • Cell division
  • Chloroplast division
  • Cytokinesis
  • Microtubules
  • Myosin

Fingerprint

Dive into the research topics of 'Cleavage-furrow formation without F-actin in Chlamydomonas'. Together they form a unique fingerprint.

Cite this