Classic Ras Proteins Promote Proliferation and Survival via Distinct Phosphoproteome Alterations in Neurofibromin-Null Malignant Peripheral Nerve Sheath Tumor Cells

Nicole M. Brossier, Amanda M. Prechtl, Jody Fromm Longo, Stephen Barnes, Landon S. Wilson, Stephanie J. Byer, Stephanie N. Brosius, Steven L. Carroll

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Neurofibromin, the tumor suppressor encoded by the neurofibromatosis type 1 (NF1) gene, potentially suppresses the activation of H-Ras, N-Ras, and K-Ras. However, it is not known whether these classic Ras proteins are hyperactivated in NF1-null nerve sheath tumors, how they contribute to tumorigenesis, and what signaling pathways mediate their effects. Here we show that H-Ras, N-Ras, and K-Ras are coexpressed with their activators (guanine nucleotide exchange factors) in neurofibromin-null malignant peripheral nerve sheath tumor (MPNST) cells, and that all 3 Ras proteins are activated. Dominant negative (DN) H-Ras, a pan-inhibitor of the classic Ras family, inhibited MPNST proliferation and survival, but not migration. However, NF1-null MPNST cells were variably dependent on individual Ras proteins. In some lines, ablation of H-Ras, N-Ras, and/or K-Ras inhibited mitogenesis. In others, ablation of a single Ras protein had no effect on proliferation; in these lines, ablation of a single Ras protein resulted in compensatory increases in the activation and/or expression of other Ras proteins. Using mass spectrometry-based phosphoproteomics, we identified 7 signaling networks affecting morphology, proliferation, and survival that are regulated by DN H-Ras. Thus, neurofibromin loss activates multiple classic Ras proteins that promote proliferation and survival by regulating several distinct signaling cascades.

Original languageEnglish
Pages (from-to)568-586
Number of pages19
JournalJournal of neuropathology and experimental neurology
Volume74
Issue number6
DOIs
StatePublished - Jun 4 2015

Keywords

  • Malignant peripheral nerve sheath tumor
  • Neurofibromatosis
  • Neurofibromin
  • Phosphoproteomics
  • Ras

Fingerprint

Dive into the research topics of 'Classic Ras Proteins Promote Proliferation and Survival via Distinct Phosphoproteome Alterations in Neurofibromin-Null Malignant Peripheral Nerve Sheath Tumor Cells'. Together they form a unique fingerprint.

Cite this