TY - JOUR
T1 - Circular-SWAT for deep learning based diagnostic classification of Alzheimer's disease
T2 - application to metabolome data
AU - Alzheimer's Disease Metabolomics Consortium (ADMC)
AU - Alzheimer’s Disease Neuroimaging Initiative (ADNI)
AU - Jo, Taeho
AU - Kim, Junpyo
AU - Bice, Paula
AU - Huynh, Kevin
AU - Wang, Tingting
AU - Arnold, Matthias
AU - Meikle, Peter J.
AU - Giles, Corey
AU - Kaddurah-Daouk, Rima
AU - Saykin, Andrew J.
AU - Nho, Kwangsik
AU - Kueider-Paisley, Alexandra
AU - Doraiswamy, P. Murali
AU - Blach, Colette
AU - Moseley, Arthur
AU - Thompson, Will
AU - St John-Williams, Lisa
AU - Mahmoudiandehkhordi, Siamak
AU - Tenenbaum, Jessica
AU - Welsh-Balmer, Kathleen
AU - Plassman, Brenda
AU - Risacher, Shannon L.
AU - Kastenmüller, Gabi
AU - Han, Xianlin
AU - Baillie, Rebecca
AU - Knight, Rob
AU - Dorrestein, Pieter
AU - Brewer, James
AU - Mayer, Emeran
AU - Labus, Jennifer
AU - Baldi, Pierre
AU - Gupta, Arpana
AU - Fiehn, Oliver
AU - Barupal, Dinesh
AU - Meikle, Peter
AU - Mazmanian, Sarkis
AU - Rader, Dan
AU - Kling, Mitchel
AU - Shaw, Leslie
AU - Trojanowski, John
AU - van Duijin, Cornelia
AU - Nevado-Holgado, Alejo
AU - Bennett, David
AU - Krishnan, Ranga
AU - Keshavarzian, Ali
AU - Vogt, Robin
AU - Ikram, Arfan
AU - Hankemeier, Thomas
AU - Thiele, Ines
AU - Price, Nathan
AU - Funk, Cory
AU - Baloni, Priyanka
AU - Jia, Wei
AU - Wishart, David
AU - Brinton, Roberta
AU - Chang, Rui
AU - Farrer, Lindsay
AU - Au, Rhoda
AU - Qiu, Wendy
AU - Würtz, Peter
AU - Koal, Therese
AU - Mangravite, Lara
AU - Krumsiek, Jan
AU - Suhre, Karsten
AU - Newman, John
AU - Moreno, Herman
AU - Foroud, Tatania
AU - Sacks, Frank
AU - Jansson, Janet
AU - Weiner, Michael W.
AU - Aisen, Paul
AU - Petersen, Ronald
AU - Jack, Clifford R.
AU - Jagust, William
AU - Trojanowki, John Q.
AU - Toga, Arthur W.
AU - Beckett, Laurel
AU - Green, Robert C.
AU - Morris, John C.
AU - Perrin, Richard J.
AU - Shaw, Leslie M.
AU - Khachaturian, Zaven
AU - Carrillo, Maria
AU - Potter, William
AU - Barnes, Lisa
AU - Bernard, Marie
AU - Gonzalez, Hector
AU - Ho, Carole
AU - Hsiao, John K.
AU - Jackson, Jonathan
AU - Masliah, Eliezer
AU - Masterman, Donna
AU - Okonkwo, Ozioma
AU - Perrin, Richard
AU - Ryan, Laurie
AU - Silverberg, Nina
AU - Fleisher, Adam
AU - Sacrey, Diana Truran
AU - Fockler, Juliet
AU - Conti, Cat
AU - Veitch, Dallas
AU - Neuhaus, John
AU - Jin, Chengshi
AU - Nosheny, Rachel
AU - Ashford, Miriam
AU - Flenniken, Derek
AU - Kormos, Adrienne
AU - Montine, Tom
AU - Rafii, Michael
AU - Raman, Rema
AU - Jimenez, Gustavo
AU - Donohue, Michael
AU - Gessert, Devon
AU - Salazar, Jennifer
AU - Zimmerman, Caileigh
AU - Cabrera, Yuliana
AU - Walter, Sarah
AU - Miller, Garrett
AU - Coker, Godfrey
AU - Clanton, Taylor
AU - Hergesheimer, Lindsey
AU - Smith, Stephanie
AU - Adegoke, Olusegun
AU - Mahboubi, Payam
AU - Moore, Shelley
AU - Pizzola, Jeremy
AU - Shaffer, Elizabeth
AU - Sloan, Brittany
AU - Harvey, Danielle
AU - Forghanian-Arani, Arvin
AU - Borowski, Bret
AU - Ward, Chad
AU - Schwarz, Christopher
AU - Jones, David
AU - Gunter, Jeff
AU - Kantarci, Kejal
AU - Senjem, Matthew
AU - Vemuri, Prashanthi
AU - Reid, Robert
AU - Fox, Nick C.
AU - Malone, Ian
AU - Thompson, Paul
AU - Thomopoulos, Sophia I.
AU - Nir, Talia M.
AU - Jahanshad, Neda
AU - DeCarli, Charles
AU - Knaack, Alexander
AU - Fletcher, Evan
AU - Tosun-Turgut, Duygu
AU - Chen, Stephanie Rossi
AU - Choe, Mark
AU - Crawford, Karen
AU - Yushkevich, Paul A.
AU - Das, Sandhitsu
AU - Koeppe, Robert A.
AU - Reiman, Eric M.
AU - Chen, Kewei
AU - Mathis, Chet
AU - Landau, Susan
AU - Cairns, Nigel J.
AU - Householder, Erin
AU - Franklin, Erin
AU - Bernhardt, Haley
AU - Taylor-Reinwald, Lisa
AU - Korecka, Magdalena
AU - Figurski, Michal
AU - Neu, Scott
AU - Apostolova, Liana G.
AU - Shen, Li
AU - Foroud, Tatiana M.
AU - Nudelman, Kelly
AU - Faber, Kelley
AU - Wilmes, Kristi
AU - Thal, Leon
AU - Silbert, Lisa C.
AU - Lind, Betty
AU - Crissey, Rachel
AU - Kaye, Jeffrey A.
AU - Carter, Raina
AU - Dolen, Sara
AU - Quinn, Joseph
AU - Schneider, Lon S.
AU - Pawluczyk, Sonia
AU - Becerra, Mauricio
AU - Teodoro, Liberty
AU - Dagerman, Karen
AU - Spann, Bryan M.
AU - Vanderswag, Helen
AU - Ziolkowski, Jaimie
AU - Heidebrink, Judith L.
AU - Zbizek-Nulph, Lisa
AU - Lord, Joanne L.
AU - Mason, Sara S.
AU - Albers, Colleen S.
AU - Knopman, David
AU - Johnson, Kris
AU - Villanueva-Meyer, Javier
AU - Pavlik, Valory
AU - Ances, Beau
AU - Womack, Kyle
N1 - Publisher Copyright:
© 2023 The Author(s)
PY - 2023/11
Y1 - 2023/11
N2 - Background: Deep learning has shown potential in various scientific domains but faces challenges when applied to complex, high-dimensional multi-omics data. Alzheimer's Disease (AD) is a neurodegenerative disorder that lacks targeted therapeutic options. This study introduces the Circular-Sliding Window Association Test (c-SWAT) to improve the classification accuracy in predicting AD using serum-based metabolomics data, specifically lipidomics. Methods: The c-SWAT methodology builds upon the existing Sliding Window Association Test (SWAT) and utilizes a three-step approach: feature correlation analysis, feature selection, and classification. Data from 997 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) served as the basis for model training and validation. Feature correlations were analyzed using Weighted Gene Co-expression Network Analysis (WGCNA), and Convolutional Neural Networks (CNN) were employed for feature selection. Random Forest was used for the final classification. Findings: The application of c-SWAT resulted in a classification accuracy of up to 80.8% and an AUC of 0.808 for distinguishing AD from cognitively normal older adults. This marks a 9.4% improvement in accuracy and a 0.169 increase in AUC compared to methods without c-SWAT. These results were statistically significant, with a p-value of 1.04 × 10ˆ-4. The approach also identified key lipids associated with AD, such as Cer(d16:1/22:0) and PI(37:6). Interpretation: Our results indicate that c-SWAT is effective in improving classification accuracy and in identifying potential lipid biomarkers for AD. These identified lipids offer new avenues for understanding AD and warrant further investigation. Funding: The specific funding of this article is provided in the acknowledgements section.
AB - Background: Deep learning has shown potential in various scientific domains but faces challenges when applied to complex, high-dimensional multi-omics data. Alzheimer's Disease (AD) is a neurodegenerative disorder that lacks targeted therapeutic options. This study introduces the Circular-Sliding Window Association Test (c-SWAT) to improve the classification accuracy in predicting AD using serum-based metabolomics data, specifically lipidomics. Methods: The c-SWAT methodology builds upon the existing Sliding Window Association Test (SWAT) and utilizes a three-step approach: feature correlation analysis, feature selection, and classification. Data from 997 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) served as the basis for model training and validation. Feature correlations were analyzed using Weighted Gene Co-expression Network Analysis (WGCNA), and Convolutional Neural Networks (CNN) were employed for feature selection. Random Forest was used for the final classification. Findings: The application of c-SWAT resulted in a classification accuracy of up to 80.8% and an AUC of 0.808 for distinguishing AD from cognitively normal older adults. This marks a 9.4% improvement in accuracy and a 0.169 increase in AUC compared to methods without c-SWAT. These results were statistically significant, with a p-value of 1.04 × 10ˆ-4. The approach also identified key lipids associated with AD, such as Cer(d16:1/22:0) and PI(37:6). Interpretation: Our results indicate that c-SWAT is effective in improving classification accuracy and in identifying potential lipid biomarkers for AD. These identified lipids offer new avenues for understanding AD and warrant further investigation. Funding: The specific funding of this article is provided in the acknowledgements section.
KW - Alzheimer's disease
KW - Deep learning
KW - Lipidomics
KW - Machine learning
KW - Metabolomics
UR - http://www.scopus.com/inward/record.url?scp=85173462324&partnerID=8YFLogxK
U2 - 10.1016/j.ebiom.2023.104820
DO - 10.1016/j.ebiom.2023.104820
M3 - Article
C2 - 37806288
AN - SCOPUS:85173462324
SN - 2352-3964
VL - 97
JO - EBioMedicine
JF - EBioMedicine
M1 - 104820
ER -